Appointment Scheduling with Limited Distributional Information

Ho-Yin Mak

Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology, Kowloon, Hong Kong hymak@ust.hk

Ying Rong

Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200052, China yrong@sjtu.edu.cn

Jiawei Zhang

Stern School of Business, IOMS-Operations Management, New York University, New York, NY 10012, jzhang@stern.nyu.edu

1. Online Supplement

Proof of Theorem 4

By using Proposition 2, and by denoting $\alpha_i = \rho_{i1}$, we have (12) is equivalent to

$$\min_{\boldsymbol{\alpha},\boldsymbol{\lambda},\boldsymbol{s}} \sum_{i=1}^{n} (\lambda_i + \mu_i \alpha_i) \\
\text{s.t.} \quad \sum_{i=k}^{\min\{n,j\}} \max_{p_i \in D_i} ((p_i - s_i)\pi_{ij} - \alpha_i p_i - \lambda_i) \le 0 \quad \text{for } 1 \le k \le n, 1 \le k \le j \le n+1 \quad (A.1) \\
\boldsymbol{s} \in \mathcal{S}.$$

For $1 \le i \le n$ and $1 \le i \le j \le n+1$, we have

$$\max_{p_i \in D_i} (p_i - s_i) \pi_{ij} - \alpha_i p_i - \lambda_i = \begin{cases} (\pi_{ij} - \alpha_i)(\mu_i + \bar{d}_i) - \pi_{ij} s_i - \lambda_i & \text{if } \pi_{ij} \ge \alpha_i \\ (\pi_{ij} - \alpha_i)(\mu_i - \underline{d}_i) - \pi_{ij} s_i - \lambda_i & \text{if } \pi_{ij} < \alpha_i. \end{cases}$$

Then (A.1) is equivalent to

$$\sum_{i=k}^{\min\{n,j\}} \pi_{ij} s_i + \lambda_i \ge \sum_{i=k}^{\min\{n,j\}} \max\left((\pi_{ij} - \alpha_i)(\mu_i + \bar{d}_i), (\pi_{ij} - \alpha_i)(\mu_i - \underline{d}_i)\right) \quad \text{for } 1 \le k \le n, 1 \le k \le j \le n+1.$$
(A.2)

By introducing new variables ξ to replace $\max\left((\pi_{ij} - \alpha_i)(\mu_i + \bar{d}_i), (\pi_{ij} - \alpha_i)(\mu_i - \underline{d}_i)\right)$, (A.2) is equivalent to

$$\sum_{\substack{i=k\\i=k}}^{\min\{n,j\}} \xi_{ij} \le \sum_{\substack{i=k\\i=k}}^{\min\{n,j\}} \lambda_i + s_i \pi_{ij} \qquad \text{for } 1 \le k \le n, 1 \le k \le j \le n+1$$

$$\xi_{ij} \ge (\pi_{ij} - \alpha_i)(\mu_i + \bar{d}_i) \qquad \text{for } 1 \le i \le n, 1 \le i \le j \le n+1$$

$$\xi_{ij} \ge (\pi_{ij} - \alpha_i)(\mu_i - \underline{d}_i) \qquad \text{for } 1 \le i \le n, 1 \le i \le j \le n+1$$

This completes the proof. \Box

Proof of Theorem 5

In this proof, we provide a feasible solution to primal problem (31) and show its objective value is equal to $u(\kappa^*)$ (part 1). Then we construct a feasible solution to the dual of problem (31) and show its objective value is also equal to $u(\kappa^*)$ (part 2). Therefore, weak duality of linear programming implies Theorem 5.

Part 1: A Primal Solution.

We first claim that there exists a feasible solution α^* to the following equations.

$$\begin{array}{ll}
\alpha_i^* = 0 & \text{for } i \in \Upsilon_1 \\
\alpha_i^* = \pi_{i,n+1} & \text{for } i \in \Upsilon_2 \\
\alpha_i^* \in (0, \pi_{i,n+1}) & \text{for } i \in \Upsilon_3 \\
\sum_{i=1}^n \left(\mu_i + \bar{d}_i - \frac{\alpha_i^*}{\pi_{i,n+1}} (\underline{d}_i + \bar{d}_i) \right) = T.
\end{array}$$
(A.3)

Notice that $u(\kappa)$ is a piecewise linear concave function. If $\kappa^* \in (0, \gamma)$, it must be one of break points, i.e. κ^* must be equal to $\pi_{i,n+1}\underline{d}_i/(\underline{d}_i + \overline{d}_i)$ for some *i*. Consider a sufficiently small $\epsilon > 0$ such that $[\kappa^* - \epsilon, \kappa^* + \epsilon]$ contains exact one break point κ^* . Since $u(\kappa^*) \ge u(\kappa^* - \epsilon)$, we must have

$$\sum_{i=1}^{n} \mu_i + \sum_{i \in \Upsilon_1 \cup \Upsilon_3} \bar{d}_i - \underline{d}_i \sum_{i \in \Upsilon_2} \ge T.$$

Similarly, since $u(\kappa^*) \ge u(\kappa^* + \epsilon)$, we must have

$$\sum_{i=1}^{n} \mu_i + \sum_{i \in \Upsilon_1} \bar{d}_i - \underline{d}_i \sum_{i \in \Upsilon_2 \cup \Upsilon_3} \leq T_i$$

Then, we define a continuous function

$$e(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \left[(\mu_i + \bar{d}_i) - \frac{\alpha_i}{\pi_{i,n+1}} (\underline{d}_i + \bar{d}_i) \right]$$

We know that $e(\underline{\alpha}) \geq T$ where $\underline{\alpha}_i = 0$ for $i \in \Upsilon_1 \cup \Upsilon_3$ and $\underline{\alpha}_i = \pi_{i,n+1}$ for $i \in \Upsilon_2$. On the other hand, we have $e(\bar{\alpha}) \leq T$ where $\bar{\alpha}_i = 0$ for $i \in \Upsilon_1$ and $\bar{\alpha}_i = \pi_{i,n+1}$ for $i \in \Upsilon_2 \cup \Upsilon_3$. Thus, there must exist an $\alpha^* \in [\underline{\alpha}, \bar{\alpha}]$ such that $e(\alpha^*) = T$ which implies the existence of a feasible α^* for the system of equations (A.3).

We are now ready to construct the following solution to problem (31).

$$\xi_{ij}^* = \begin{cases} (\pi_{ij} - \alpha_i^*)(\mu_i + \bar{d}_i) & \text{for } \alpha_i^* \le \pi_{ij} \\ (\pi_{ij} - \alpha_i^*)(\mu_i - \underline{d}_i) & \text{for } \alpha_i^* > \pi_{ij} \end{cases}$$
(A.4)

$$\lambda_i^* = \xi_{ii}^*, \qquad \text{for } i = 1, \cdots, n \qquad (A.5)$$

$$s_i^* = \mu_i + \bar{d}_i - \frac{\alpha_i^*}{\pi_{i,n+1}} (\underline{d}_i + \bar{d}_i), \quad \text{for } i = 1, \cdots, n.$$
(A.6)

This solution clearly satisfies constraints (32)-(36), and thus is a feasible solution to problem (31). Next, we show that its corresponding objective value $u(\kappa^*)$.

By construction, for $i \in \Upsilon_1$, we have $\alpha_i^* = \lambda_i^* = 0$ and thus $\lambda_i^* + \mu \alpha_i^* = 0$. For $i \in \Upsilon_2$, we have $\alpha_i^* = \pi_{i,n+1}$ and $\lambda_i^* = -\pi_{i,n+1}(\mu_i - \underline{d}_i)$, which implies $\lambda_i^* + \mu_i \alpha_i^* = \pi_{i,n+1} \underline{d}_i$. For $i \in \Upsilon_3$, we have

$$\sum_{i \in \Upsilon_3} (\lambda_i^* + \mu_i \alpha_i^*)$$

=
$$\sum_{i \in \Upsilon_3} (-\alpha_i^* (\mu_i - \underline{d}_i) + \mu_i \alpha_i^*)$$

=
$$\sum_{i \in \Upsilon_3} \underline{d}_i \alpha_i^*$$

=
$$\kappa^* \sum_{i \in \Upsilon_3} (\underline{d}_i + \overline{d}_i) \frac{\alpha_i^*}{\pi_{i,n+1}}$$

where the last equality follows from the fact that $\kappa^* = \pi_{i,n+1}\underline{d}_i/(\underline{d}_i + \overline{d}_i)$ for $i \in \Upsilon_3$. However, by (A.3), $\alpha_i^* = 0$ for $i \in \Upsilon_1$, and

$$\sum_{i=1}^{n} \left(\mu_i + \bar{d}_i - \frac{\alpha_i^*}{\pi_{i,n+1}} (\underline{d}_i + \bar{d}_i) \right) = T.$$

It then follows that

$$\kappa^* \sum_{i \in \Upsilon_3} (\underline{d}_i + \bar{d}_i) \frac{\alpha_i^*}{\pi_{i,n+1}} = \kappa^* (-T + \sum_{i=1}^n (\mu_i + \bar{d}_i) - \sum_{i \in \Upsilon_2} (\underline{d}_i + \bar{d}_i)).$$

In sum,

$$\sum_{i=1}^{n} (\lambda_{i}^{*} + \mu_{i} \alpha_{i}^{*}) = \sum_{i \in \Upsilon_{2}} (\lambda_{i}^{*} + \mu_{i} \alpha_{i}^{*}) + \sum_{i \in \Upsilon_{3}} (\lambda_{i}^{*} + \mu_{i} \alpha_{i}^{*})$$

$$= \sum_{i \in \Upsilon_{2}} \pi_{i,n+1} \underline{d}_{i} + \kappa^{*} \sum_{i \in \Upsilon_{3}} (\underline{d}_{i} + \overline{d}_{i}) \frac{\alpha_{i}^{*}}{\pi_{i,n+1}}$$

$$= \sum_{i \in \Upsilon_{2}} \pi_{i,n+1} \underline{d}_{i} + \kappa^{*} \left(-T + \sum_{i=1}^{n} (\mu_{i} + \overline{d}_{i}) - \sum_{i \in \Upsilon_{2}} (\underline{d}_{i} + \overline{d}_{i}) \right)$$

$$= \left(\sum_{i=1}^{n} \mu_{i} - T \right) \kappa^{*} + \sum_{i \in \Upsilon_{1} \cup \Upsilon_{3}} \overline{d}_{i} \kappa^{*} + \sum_{i \in \Upsilon_{2}} \underline{d}_{i} (\pi_{i,n+1} - \kappa^{*})$$

$$= \left(\sum_{i=1}^{n} \mu_{i} - T \right) \kappa^{*} + \sum_{i=1}^{n} \min(\overline{d}_{i} \kappa^{*}, \underline{d}_{i} (\pi_{i,n+1} - \kappa^{*}))$$

$$= u(\kappa^{*}),$$

where the second last equality holds by the definition of Υ_i for i = 1, 2, 3.

Part 2: A Dual Solution.

Let δ_{kj} be the dual variable associated with constraint (32) for $1 \le k \le n$ and $k \le j \le n+1$, ϑ_{ij} be the dual variable associated with constraint (33) for $1 \le i \le n$ and $i \le j \le n+1$, ι_{ij} be the dual

variable associated with constraint (34) for $1 \le i \le n$ and $i \le j \le n+1$, and κ be the dual variable associated with constraint (35). Then the dual problem of (31) is.

$$\max_{\kappa,\delta,\vartheta,\iota\geq 0} \sum_{\substack{i=1\\j \\ m+1}}^{n} \sum_{\substack{j=i\\m+1}}^{n+1} \left[\pi_{ij}(\mu_i - \underline{d}_i)\vartheta_{ij} + \pi_{ij}(\mu_i + \overline{d}_i)\iota_{ij} \right] - \kappa T$$
(A.7)

s.t.
$$\sum_{\substack{k=1\\i\\n+1}}^{i}\sum_{\substack{j=i\\n+1}}^{n+1}\delta_{kj} = 1 \qquad \text{for } 1 \le i \le n \qquad (A.8)$$

$$\sum_{\substack{k=1\\i}}\sum_{j=i}^{n+1}\pi_{ij}\delta_{kj} \le \kappa \qquad \text{for } 1 \le i \le n \qquad (A.9)$$

$$\sum_{\substack{k=1\\n+1}}^{i} \delta_{kj} = \vartheta_{ij} + \iota_{ij} \qquad \text{for } 1 \le i \le n, 1 \le i \le j \le n+1 \quad (A.10)$$
$$\sum_{\substack{j=i\\i=i}}^{k-1} \left[\vartheta_{ij}(\mu_i - \underline{d}_i) + \iota_{ij}(\mu_i + \overline{d}_i)\right] = \mu_i \qquad \text{for } 1 \le i \le n. \qquad (A.11)$$

We construct a dual solution as follows. Let

$$\begin{split} \delta^{*}_{1,n+1} &= \frac{\kappa^{*}}{\pi_{1,n+1}} \\ \delta^{*}_{i,n+1} &= \frac{\kappa^{*}}{\pi_{i,n+1}} - \frac{\kappa^{*}}{\pi_{i-1,n+1}} & \text{for } i = 2, \cdots, n \\ \delta^{*}_{ii} &= 1 - \frac{\kappa^{*}}{\pi_{i,n+1}} & \text{for } i = 1, \cdots, n \\ \delta^{*}_{ij} &= 0 & \text{for } i < j \le n. \end{split}$$

For any *i* with $\bar{d}_i \kappa^* \leq \underline{d}_i (\pi_{i,n+1} - \kappa^*)$, we let

$$\begin{split} \iota^*_{i,n+1} &= \frac{\kappa^*}{\pi_{i,n+1}} \\ \iota^*_{ii} &= \frac{d_i}{\bar{d}_i + \underline{d}_i} - \frac{\kappa^*}{\pi_{i,n+1}} \\ \iota^*_{ij} &= 0 & \text{for } i < j \le n \\ \vartheta^*_{ii} &= \frac{\bar{d}_i}{\bar{d}_i + \underline{d}_i} \\ \vartheta^*_{ij} &= 0 & \text{for } i < j \le n+1. \end{split}$$

For any *i* with $\bar{d}_i \kappa^* > \underline{d}_i(\pi_{i,n+1} - \kappa^*)$, we let

$$\begin{split} \iota_{i,n+1}^* &= \frac{\underline{a}_i}{\overline{d}_i + \underline{d}_i} \\ \iota_{ij}^* &= 0 & \text{for } i \leq j \leq n \\ \vartheta_{i,n+1}^* &= \frac{\kappa^*}{\pi_{i,n+1}} - \frac{\underline{d}_i}{\overline{d}_i + \underline{d}_i} \\ \vartheta_{ii}^* &= 1 - \frac{\kappa^*}{\pi_{i,n+1}} \\ \vartheta_{ij}^* &= 0 & \text{for } i < j \leq n \end{split}$$

It is straightforward to verify that the above solution is feasible to the dual problem because it ensures constraints (A.8)-(A.11) to hold as equality. Moreover, its associated objective value is $(\sum_{i=1}^{n} \mu_i - T) \kappa^* + \sum_{i=1}^{n} \min(\bar{d}_i \kappa^*, \underline{d}_i (\pi_{i,n+1} - \kappa^*))$. This completes the proof. \Box

Proof of Theorem 6

Since $\pi_{i,n+1} \ge \gamma \ge \kappa_{\psi}$, $\pi_{i,n+1} - \kappa_{\psi}$ must be positive and decreasing in *i*. Following the same proof as that of Theorem 3, we have

$$G(\psi) \ge \left(\sum_{i=1}^{n} \mu_{\psi} - T\right) \kappa_{\psi} + L_{\psi} \sum_{i=1}^{n} \min(\varphi \kappa_{\psi}, (1 - \varphi)(\pi_{i,n+1} - \kappa_{\psi}))$$

$$\geq \left(\sum_{i=1}^{n} \mu_{\psi} - T\right) \kappa_{\psi^*} + L_{\psi} \sum_{i=1}^{n} \min(\varphi \kappa_{\psi^*}, (1-\varphi)(\pi_{i,n+1} - \kappa_{\psi^*}))$$

$$\geq \left(\sum_{i=1}^{n} \mu_{\psi^*} - T\right) \kappa_{\psi^*} + L_{\psi^*} \sum_{i=1}^{n} \min(\varphi \kappa_{\psi^*}, (1-\varphi)(\pi_{i,n+1} - \kappa_{\psi^*}))$$

$$= G(\psi^*)$$

This completes the proof. \Box

Proof of Lemma 8

Proof: We introduce a new variable z to denote $\sum_{j=1}^{m} a_j x_j$. By assumption, for any feasible solution $\boldsymbol{x}, \sum_{j=1}^{m} a_j x_j \in [0, a_m]$. Then, problem (39) can be reformulated as

$$\min_{z \in [0,a_m]} opt(z), \tag{A.12}$$

where, for any given $z \in [0, a_m]$,

$$opt(z) = \max_{\mathbf{x}} \sqrt{\sum_{j=1}^{m} a_j^2 x_j - z^2 - bz}$$
(A.13)
s.t. $\sum_{\substack{j=1\\m}}^{m} x_j = 1$
 $\sum_{\substack{j=1\\x_j \ge 0, \\x_j \ge 0, \\x_j \ge 0, \\x_j \ge 0, \\x_j \ge 1, \cdots, m.$

When z is fixed, the objective function of problem (A.13) is strictly increasing in $\sum_{j=1}^{m} a_j^2 x_j$. Thus, any optimal solution to problem (A.13) is also optimal to the following problem

$$\max_{\mathbf{x}} \sum_{\substack{j=1\\m}}^{m} a_j^2 x_j$$
(A.14)
s.t.
$$\sum_{\substack{j=1\\m}}^{m} x_j = 1$$
$$\sum_{\substack{j=1\\m}}^{m} a_j x_j = z$$
$$x_j \ge 0, \quad \text{for } j = 1, \cdots, m,$$

and vice versa.

We now solve problem (A.14) for any given $z \in [0, a_m]$. The problem is a linear program with two linear constraints, besides the nonnegativity constraints. Thus, there exists an optimal solution, denoted by $\boldsymbol{x}(z)$, which has at most two non-zero variables. Then suppose that the two non-zero variables are $x_i(z) > 0$ and $x_k(z) \ge 0$. And $x_j(z) = 0$ for all $j \ne i, k$. Without loss of generality, we assume that $i \le k$. From the constraints of problem (A.14), we must have $x_k(z) = 1 - x_i(z)$, and

$$z = a_i x_i(z) + a_k x_k(z) = a_i x_i(z) + a_k(1 - x_i(z)) = a_k - (a_k - a_i) x_i(z).$$

It follows that

$$x_i(z) = \frac{a_k - z}{a_k - a_i} > 0, \quad x_k(z) = \frac{z - a_i}{a_k - a_i} \ge 0.$$

Therefore, the optimal objective value of (A.14) is given by

$$a_i^2 x_i(z) + a_k^2 x_k(z) = a_k z + a_i(z - a_k) \le a_k z \le a_m z$$

where the first inequality holds because $z - a_k \leq 0$ and the second holds because $a_k \leq a_m$ and $z \geq 0$. That is, the optimal objective value of (A.14) is bounded above by $a_m z$, which is attainable when i = 1 and k = m. This shows that $x_1(z) = 1 - \frac{z}{a_m}$, $x_m(z) = \frac{z}{a_m}$. Therefore, for any given $z \in [0, a_m]$,

$$opt(z) = \sqrt{a_m z - z^2} - bz.$$

By Lemma 7, $z^* = \frac{a_m}{2} \left[1 - \frac{b}{\sqrt{1+b^2}} \right]$ maximizes opt(z) in $[0, a_m]$. And $(\boldsymbol{x}(z^*), z^*)$ is an optimal solution to problem (39). The lemma follows by noticing that $x_1(z^*) = \frac{1}{2} + \frac{b}{2\sqrt{1+b^2}}, x_m(z^*) = \frac{1}{2} - \frac{b}{2\sqrt{1+b^2}},$ and $x_j(z^*) = 0$ for 1 < j < m. \Box