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1. Online Supplement
Proof of Theorem 4

By using Proposition 2, and by denoting a; = p;;, we have (12) is equivalent to

m}i\n >y (N )
s.t. Zzg{n’j} max ((pi = si)mij —aipi — X)) <0 for 1<k<n,1<k<j<n+1 (Al
pi€D;
seS.

For1<i<mnand 1<i<j<n+1, we have
{(Wz‘j — o) (i +di) —misi— N if mi; > oy

max (pz — Si)ﬂ-ij — ;P — >\i =

P;ED; (7Tij - ai)(ﬂz‘ - di) — TS — i if 5 < Q.

Then (A.1) is equivalent to

min{n,j} min{n,j}
Z TijSitAi > Z max ((my; — ;) (i + i), (735 — ;) (i — ;) for 1<k <n,1<k<j<n+1l.
i=k i=k
(A.2)

By introducing new variables ¢ to replace max ((m;; — c;)(ps +ds), (35 — ) (i — d;)), (A.2) is
equivalent to

Z?:Z{"’j} gij < Zznziz{f’j} i + 574 for 1<k<n,1<k<j<n+1
&ij > (mij —ou) (s + dy) for 1<i<n,1<i<j<n+1

&ij > (m; —ou) (i — d;) for 1<i<n,1<i<j<n+1l.

This completes the proof. [
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Proof of Theorem 5

In this proof, we provide a feasible solution to primal problem (31) and show its objective value is
equal to u(k*) (part 1). Then we construct a feasible solution to the dual of problem (31) and show
its objective value is also equal to u(k*) (part 2). Therefore, weak duality of linear programming
implies Theorem 5.

Part 1: A Primal Solution.

We first claim that there exists a feasible solution a* to the following equations.

;=0 for ie T
Q= Tint1 for i € Ty
a; € (0,7 n11) for i € T (A.3)
2 i (Ni +d; = 0 (dy + cii)> =T.

Notice that u(k) is a piecewise linear concave function. If * € (0,+), it must be one of break points,
i.e. k* must be equal to 7;,,1d;/(d; + d;) for some i. Consider a sufficiently small € > 0 such that

[k* —€,K* + €] contains exact one break point k*. Since u(k*) > u(k* —€), we must have
St ¥ a4y e
i=1 1i€YT1UT3 €Yo
Similarly, since u(k*) > u(k* + €), we must have
n
St Y4 Y <t
i=1 €Ty i€YTUT3

Then, we define a continuous function

n

e(a) = Z [(Mz‘ +d;) -

i=1

a;

(d, +czi).]

T n+1

We know that e(a) > T where a; =0 for i € T, UY3 and a; = m; ,,41 for i € To. On the other hand,
we have e(a) <T where @; =0 for i € T and &; =7 ,,41 for i € Yo UT3. Thus, there must exist
an o € [o, @ such that e(a*) =T which implies the existence of a feasible a* for the system of
equations (A.3).

We are now ready to construct the following solution to problem (31).

g —ai) (i +dy) for of <m;;
= {(7%‘ —aj)(pi—d;)  for af > (A4
=& fori=1,---,n (A.5)
S:ZMi+Ji_ % (dl‘i‘gz); fori:]-a"' y T (A6>

T n+1
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This solution clearly satisfies constraints (32)-(36), and thus is a feasible solution to problem (31).
Next, we show that its corresponding objective value u(k*).
By construction, for i € Ty, we have a = A} =0 and thus A] 4+ pa; = 0. For i € Ty, we have

af =T i1 and A = —m; 41 (1 — d;), which implies A} + p;0f =7 ,41d;. For i € T3, we have

Z (A} + piaf)

i€Y3

= Z (—a (1s — d;) + i)

i€Ts

=Y daj

€T3

:mZd-i—d

€T3

T n+1

where the last equality follows from the fact that x* = m;,,41d,/(d, + d;) for i € 3. However, by
(A.3), af =0 forie Yy, and

It then follows that

m2d+d

€T3

T + Z(M + d_z) — Z (d; + CL))
Min+1 i=1 i€
In sum,

n

SO mial) =+ wad) + > (A + o]

i=1 1€EYo i€Y3
i€Yo zeTg
= Z Tint1d; + K" (—T + Z(,ui + Ji) — Z (d, + di))
i€ T i=1 i€T
= <Z i — T) K+ Z dik* + Z (M1 — K)
i=1 Z€T1UT3 €Yo
— <Z'u1 —T) K —{—me (dir*, d;(Ts i1 — K))
i=1
= u(r"),

where the second last equality holds by the definition of Y; for i =1,2, 3.
Part 2: A Dual Solution.
Let d5; be the dual variable associated with constraint (32) for 1 <k<nand k<j<n+1, J;

be the dual variable associated with constraint (33) for 1 <i<n and i <j <n+1, ¢;; be the dual
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variable associated with constraint (34) for 1 <i<n and i <j<n+1, and k be the dual variable

associated with constraint (35). Then the dual problem of (31) is.

n n+l

maXg, §,9,.>0 Z Z [Wij (,U,,L — dz)ﬂw + Tij (,Ufz + Czi)bij] — kT (A?)

s.t.

i=1 j=1i
i n+1

22 0k =1

k=1 j=t
i n+l1

Z Z Tij0k; <K

k=1 j=i

Z (Skj = 01']‘ + Lij

k=1

n+1 _

Z ['&ij(ﬂi —d;) + v (ps + dz)] = Hi

i=i

for1<i<n (A.8)

for 1<i<n (A.9)

for1<i<mn,1<i<j<n+1 (A.10)

for 1 <i<n. (A.11)

We construct a dual solution as follows. Let

X
5 _ &

1,n+1 T1,n+1
oF — & &

i,n+1 Tintl | Ti-lntl

A

Ti,n+1
* —

*

fori=2,---,n

fori=1,---,n
for i< j<n.

For any i with d;x* < d, (711 — K*), we let

*

L¥ =
L+l T o
fg— =9 K
o Ji
x
t;;=0

9 = —di
w di+di

95,=0

*

+d; T n+1

fori<j<n

fori<j<n+1.

For any i with d;x* > d, (T ny1 — K*), we let

g = 4
i,n+1 d;+d;

*
ti; =0

* _
ﬂi,n-&-l -

fori<j<n
K* d;
Tingl d;+d;
* K
U5 =1-

Tin4+1
*
9%, =0

for i <j<n.

It is straightforward to verify that the above solution is feasible to the dual problem because it

ensures constraints (A.8)-(A.11) to hold as equality. Moreover, its associated objective value is

O i —T)k*+ Y1 min(d;x*, d;(m; n i1 — k*)). This completes the proof. [

Proof of Theorem 6

Since m; 41 > > Ky, Tint1 — Ky must be positive and decreasing in i. Following the same proof

as that of Theorem 3, we have

G(y) > <Z oy — T) Ky + Ly y_min(pry, (1— @) (Tine1 — k)

i=1 i=1
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> (> - T) Kye + Ly Yy min(@rge, (1 =) (Tinp1 — fye))
i=1 =1

Z Z 'U,w* — T) Hw* -+ Lw* Zmin(gp&w, (1 — @)(Wi,n-‘rl — :‘Qw*))
=1 =1

=G(")

This completes the proof. [

Proof of Lemma 8

m

Proof: We introduce a new variable z to denote » ;" , a;x;. By assumption, for any feasible solution

x, 3" az; €[0,a,]. Then, problem (39) can be reformulated as

min  opt(z), (A.12)

z€[0,am]

where, for any given z € [0, a,,],

opt(z) = (A.13)

When 2 is fixed, the objective function of problem (A.13) is strictly increasing in )", ajx;. Thus,

any optimal solution to problem (A.13) is also optimal to the following problem

maxy Za?a:j (A.14)
j=1
=1
Zajxj =z
j=1

xgzO, forj=1,---,m,

and vice versa.

We now solve problem (A.14) for any given z € [0, a,,|. The problem is a linear program with two
linear constraints, besides the nonnegativity constraints. Thus, there exists an optimal solution,
denoted by «(z), which has at most two non-zero variables. Then suppose that the two non-zero
variables are z;(z) >0 and z4(2) > 0. And z;(z) =0 for all j #i,k. Without loss of generality, we

assume that ¢ < k. From the constraints of problem (A.14), we must have x;(z) =1 — z;(z), and

z=a;x;(2) + arrr(z) = a;x;(2) + ar(1 — z;(2)) = ar, — (ar — a;)zi(2).
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It follows that
ap — 2
i(2) = >0, = >0.
7 (2) A — a4 7 (2) A — a;

zZ— Q;

Therefore, the optimal objective value of (A.14) is given by
a;wi(2) +aire(2) = arz +ai(z —ar) < apz < apz

where the first inequality holds because z — a, < 0 and the second holds because a; < a,,, and z > 0.
That is, the optimal objective value of (A.14) is bounded above by a,,z, which is attainable when

i=1 and k=m. This shows that z,(z) =1 — =, z,,(2) = ;= Therefore, for any given z € [0, a,,),

opt(z) = v/ amz — 22 — bz.
b

By Lemma 7, z* = [1 — m] maximizes opt(z) in [0,a,,]. And (x(z*),2*) is an optimal solu-

. s *) 1 b * — 1 _ b
tion to problem (39). The lemma follows by noticing that z(z*) = 5 + yorer T (2") =3 Y ored
and z;(z*)=0for 1<j<m. O



