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1. Online Supplement

Proof of Theorem 4

By using Proposition 2, and by denoting αi = ρi1, we have (12) is equivalent to

min
α,λ,s

∑n

i=1 (λi +µiαi)

s.t.
∑min{n,j}

i=k max
pi∈Di

((pi− si)πij −αipi−λi)≤ 0 for 1≤ k≤ n,1≤ k≤ j ≤ n+ 1

s∈ S.

(A.1)

For 1≤ i≤ n and 1≤ i≤ j ≤ n+ 1, we have

max
pi∈Di

(pi− si)πij −αipi−λi =

{
(πij −αi)(µi + d̄i)−πijsi−λi if πij ≥ αi
(πij −αi)(µi− di)−πijsi−λi if πij <αi.

Then (A.1) is equivalent to

min{n,j}∑
i=k

πijsi+λi ≥
min{n,j}∑
i=k

max
(
(πij −αi)(µi + d̄i), (πij −αi)(µi− di)

)
for 1≤ k≤ n,1≤ k≤ j ≤ n+1.

(A.2)

By introducing new variables ξ to replace max
(
(πij −αi)(µi + d̄i), (πij −αi)(µi− di)

)
, (A.2) is

equivalent to ∑min{n,j}
i=k ξij ≤

∑min{n,j}
i=k λi + siπij for 1≤ k≤ n,1≤ k≤ j ≤ n+ 1

ξij ≥ (πij −αi)(µi + d̄i) for 1≤ i≤ n,1≤ i≤ j ≤ n+ 1
ξij ≥ (πij −αi)(µi− di) for 1≤ i≤ n,1≤ i≤ j ≤ n+ 1.

This completes the proof. �
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Proof of Theorem 5

In this proof, we provide a feasible solution to primal problem (31) and show its objective value is

equal to u(κ∗) (part 1). Then we construct a feasible solution to the dual of problem (31) and show

its objective value is also equal to u(κ∗) (part 2). Therefore, weak duality of linear programming

implies Theorem 5.

Part 1: A Primal Solution.

We first claim that there exists a feasible solution α∗ to the following equations.

α∗i = 0 for i∈Υ1

α∗i = πi,n+1 for i∈Υ2

α∗i ∈ (0, πi,n+1) for i∈Υ3∑n

i=1

(
µi + d̄i− α∗

i
πi,n+1

(di + d̄i)
)

= T.

(A.3)

Notice that u(κ) is a piecewise linear concave function. If κ∗ ∈ (0, γ), it must be one of break points,

i.e. κ∗ must be equal to πi,n+1di/(di + d̄i) for some i. Consider a sufficiently small ε > 0 such that

[κ∗− ε, κ∗+ ε] contains exact one break point κ∗. Since u(κ∗)≥ u(κ∗− ε), we must have

n∑
i=1

µi +
∑

i∈Υ1∪Υ3

d̄i− di
∑
i∈Υ2

≥ T.

Similarly, since u(κ∗)≥ u(κ∗+ ε), we must have

n∑
i=1

µi +
∑
i∈Υ1

d̄i− di
∑

i∈Υ2∪Υ3

≤ T.

Then, we define a continuous function

e(α) =
n∑
i=1

[
(µi + d̄i)−

αi
πi,n+1

(di + d̄i).

]
We know that e(α)≥ T where αi = 0 for i∈Υ1∪Υ3 and αi = πi,n+1 for i∈Υ2. On the other hand,

we have e(ᾱ)≤ T where ᾱi = 0 for i ∈Υ1 and ᾱi = πi,n+1 for i ∈Υ2 ∪Υ3. Thus, there must exist

an α∗ ∈ [α, ᾱ] such that e(α∗) = T which implies the existence of a feasible α∗ for the system of

equations (A.3).

We are now ready to construct the following solution to problem (31).

ξ∗ij =

{
(πij −α∗i )(µi + d̄i) for α∗i ≤ πij
(πij −α∗i )(µi− di) for α∗i >πij

(A.4)

λ∗i = ξ∗ii, for i= 1, · · · , n (A.5)

s∗i = µi + d̄i−
α∗i

πi,n+1

(di + d̄i), for i= 1, · · · , n. (A.6)
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This solution clearly satisfies constraints (32)-(36), and thus is a feasible solution to problem (31).

Next, we show that its corresponding objective value u(κ∗).

By construction, for i ∈ Υ1, we have α∗i = λ∗i = 0 and thus λ∗i + µα∗i = 0. For i ∈ Υ2, we have

α∗i = πi,n+1 and λ∗i =−πi,n+1(µi− di), which implies λ∗i +µiα
∗
i = πi,n+1di. For i∈Υ3, we have

∑
i∈Υ3

(λ∗i +µiα
∗
i )

=
∑
i∈Υ3

(−α∗i (µi− di) +µiα
∗
i )

=
∑
i∈Υ3

diα
∗
i

= κ∗
∑
i∈Υ3

(di + d̄i)
α∗i

πi,n+1

where the last equality follows from the fact that κ∗ = πi,n+1di/(di + d̄i) for i ∈Υ3. However, by

(A.3), α∗i = 0 for i∈Υ1, and

n∑
i=1

(
µi + d̄i−

α∗i
πi,n+1

(di + d̄i)

)
= T.

It then follows that

κ∗
∑
i∈Υ3

(di + d̄i)
α∗i

πi,n+1

= κ∗(−T +
n∑
i=1

(µi + d̄i)−
∑
i∈Υ2

(di + d̄i)).

In sum,

n∑
i=1

(λ∗i +µiα
∗
i ) =

∑
i∈Υ2

(λ∗i +µiα
∗
i ) +

∑
i∈Υ3

(λ∗i +µiα
∗
i )

=
∑
i∈Υ2

πi,n+1di +κ∗
∑
i∈Υ3

(di + d̄i)
α∗i

πi,n+1

=
∑
i∈Υ2

πi,n+1di +κ∗

(
−T +

n∑
i=1

(µi + d̄i)−
∑
i∈Υ2

(di + d̄i)

)

=

(
n∑
i=1

µi−T

)
κ∗+

∑
i∈Υ1∪Υ3

d̄iκ
∗+

∑
i∈Υ2

di(πi,n+1−κ∗)

=

(
n∑
i=1

µi−T

)
κ∗+

n∑
i=1

min(d̄iκ
∗, di(πi,n+1−κ∗))

= u(κ∗),

where the second last equality holds by the definition of Υi for i= 1,2,3.

Part 2: A Dual Solution.

Let δkj be the dual variable associated with constraint (32) for 1≤ k ≤ n and k ≤ j ≤ n+ 1, ϑij

be the dual variable associated with constraint (33) for 1≤ i≤ n and i≤ j ≤ n+ 1, ιij be the dual
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variable associated with constraint (34) for 1≤ i≤ n and i≤ j ≤ n+ 1, and κ be the dual variable

associated with constraint (35). Then the dual problem of (31) is.

maxκ,δ,ϑ,ι≥0

n∑
i=1

n+1∑
j=i

[
πij(µi− di)ϑij +πij(µi + d̄i)ιij

]
−κT (A.7)

s.t.
i∑

k=1

n+1∑
j=i

δkj = 1 for 1≤ i≤ n (A.8)

i∑
k=1

n+1∑
j=i

πijδkj ≤ κ for 1≤ i≤ n (A.9)

i∑
k=1

δkj = ϑij + ιij for 1≤ i≤ n,1≤ i≤ j ≤ n+ 1 (A.10)

n+1∑
j=i

[
ϑij(µi− di) + ιij(µi + d̄i)

]
= µi for 1≤ i≤ n. (A.11)

We construct a dual solution as follows. Let

δ∗1,n+1 = κ∗

π1,n+1

δ∗i,n+1 = κ∗

πi,n+1
− κ∗

πi−1,n+1
for i= 2, · · · , n

δ∗ii = 1− κ∗

πi,n+1
for i= 1, · · · , n

δ∗ij = 0 for i < j ≤ n.

For any i with d̄iκ
∗ ≤ di(πi,n+1−κ∗), we let

ι∗i,n+1 = κ∗

πi,n+1

ι∗ii =
di

d̄i+di
− κ∗

πi,n+1

ι∗ij = 0 for i < j ≤ n
ϑ∗ii = d̄i

d̄i+di

ϑ∗ij = 0 for i < j ≤ n+ 1.

For any i with d̄iκ
∗ >di(πi,n+1−κ∗), we let

ι∗i,n+1 =
di

d̄i+di

ι∗ij = 0 for i≤ j ≤ n
ϑ∗i,n+1 = κ∗

πi,n+1
− di

d̄i+di

ϑ∗ii = 1− κ∗

πi,n+1

ϑ∗ij = 0 for i < j ≤ n.
It is straightforward to verify that the above solution is feasible to the dual problem because it

ensures constraints (A.8)-(A.11) to hold as equality. Moreover, its associated objective value is

(
∑n

i=1 µi−T )κ∗+
∑n

i=1 min(d̄iκ
∗, di(πi,n+1−κ∗)). This completes the proof. �

Proof of Theorem 6

Since πi,n+1 ≥ γ ≥ κψ, πi,n+1−κψ must be positive and decreasing in i. Following the same proof

as that of Theorem 3, we have

G(ψ) ≥

(
n∑
i=1

µψ −T

)
κψ +Lψ

n∑
i=1

min(ϕκψ, (1−ϕ)(πi,n+1−κψ))
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≥

(
n∑
i=1

µψ −T

)
κψ∗ +Lψ

n∑
i=1

min(ϕκψ∗ , (1−ϕ)(πi,n+1−κψ∗))

≥

(
n∑
i=1

µψ∗ −T

)
κψ∗ +Lψ∗

n∑
i=1

min(ϕκψ∗ , (1−ϕ)(πi,n+1−κψ∗))

= G(ψ∗)

This completes the proof. �

Proof of Lemma 8

Proof: We introduce a new variable z to denote
∑m

j=1 ajxj. By assumption, for any feasible solution

x,
∑m

j=1 ajxj ∈ [0, am]. Then, problem (39) can be reformulated as

min
z∈[0,am]

opt(z), (A.12)

where, for any given z ∈ [0, am],

opt(z) = maxx

√√√√ m∑
j=1

a2
jxj − z2− bz (A.13)

s.t.
m∑
j=1

xj = 1

m∑
j=1

ajxj = z

xj ≥ 0, for j = 1, · · · ,m.

When z is fixed, the objective function of problem (A.13) is strictly increasing in
∑m

j=1 a
2
jxj. Thus,

any optimal solution to problem (A.13) is also optimal to the following problem

maxx

m∑
j=1

a2
jxj (A.14)

s.t.
m∑
j=1

xj = 1

m∑
j=1

ajxj = z

xj ≥ 0, for j = 1, · · · ,m,

and vice versa.

We now solve problem (A.14) for any given z ∈ [0, am]. The problem is a linear program with two

linear constraints, besides the nonnegativity constraints. Thus, there exists an optimal solution,

denoted by x(z), which has at most two non-zero variables. Then suppose that the two non-zero

variables are xi(z)> 0 and xk(z)≥ 0. And xj(z) = 0 for all j 6= i, k. Without loss of generality, we

assume that i≤ k. From the constraints of problem (A.14), we must have xk(z) = 1−xi(z), and

z = aixi(z) + akxk(z) = aixi(z) + ak(1−xi(z)) = ak− (ak− ai)xi(z).
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It follows that

xi(z) =
ak− z
ak− ai

> 0, xk(z) =
z− ai
ak− ai

≥ 0.

Therefore, the optimal objective value of (A.14) is given by

a2
ixi(z) + a2

kxk(z) = akz+ ai(z− ak)≤ akz ≤ amz

where the first inequality holds because z−ak ≤ 0 and the second holds because ak ≤ am and z ≥ 0.

That is, the optimal objective value of (A.14) is bounded above by amz, which is attainable when

i= 1 and k=m. This shows that x1(z) = 1− z
am

, xm(z) = z
am

. Therefore, for any given z ∈ [0, am],

opt(z) =
√
amz− z2− bz.

By Lemma 7, z∗ = am
2

[
1− b√

1+b2

]
maximizes opt(z) in [0, am]. And (x(z∗), z∗) is an optimal solu-

tion to problem (39). The lemma follows by noticing that x1(z∗) = 1
2

+ b

2
√

1+b2
, xm(z∗) = 1

2
− b

2
√

1+b2
,

and xj(z
∗) = 0 for 1< j <m. �


