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ABSTRACT
Delivery of products and services relies on well-managed opera-
tions. In designing large-scaled supply chain and service systems,
locations of key facilities are a critical decision, as these facilities
form the backbone of operations of these systems. For example, a
key to effective supply chain management is the deployment of a
structurally well-designed facility network, consisting of plants,
warehouses, retail stores, etc. The aim of the study of facility
location is to develop analytical methodologies to inform the plan-
ning decisions for evaluating and selecting siting plans for these
facilities that ensure both convenient provision of (or access to)
products and services by customers and users, as well as efficient
operations (i.e., low operating costs).

Facility location and network design has long been an integral
topic of study in operations management. In this literature, one
may observe that earlier works mainly focused on a strategic view
of accessibility and operational costs, using performance metrics
based on strategic distances between the chosen facilities and
customers or suppliers. This traditional approach often neglects
the impacts of future tactical and operational activities to be
conducted in the network, and optimizes objectives that do not
fully reflect the long-term performance of the facility network. In
attempt to rectify this shortcoming, researchers have proposed an
integrated modeling approach that enhances the classical models
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by jointly considering strategic, tactical and operational activities
in facility systems. By integrating tactical and operational char-
acteristics of facility networks into strategic design decisions, the
integrated approach offers a more balanced perspective on the
strategic trade-offs in network design.
As shown in a series of recent research, this integrated modeling
approach can potentially deliver new insights into facility loca-
tion problems in a variety of contexts, e.g., supply chain network
design, deployment of health care facilities, and design of storage
systems for renewable power. In this monograph, we perform a
review of some important concepts in this emerging stream of
literature. Motivated by supply chain design applications, we first
discuss the basic modeling concepts, including both mathemati-
cal programming-based and analytical approaches for modeling.
While simulation-optimization approaches can be used for analyz-
ing location problems, they are not covered in the scope of this
monograph. We also review techniques adopted in the literature
to analyze and solve these classes of location models. This is
aimed to serve as a reference for readers (especially students)
who like to develop their own models but are less familiar with
this line of research. Furthermore, we review a number of applica-
tions of this line of research, covering both applications in supply
chain contexts and other emerging domains, such as sustainable
transportation, energy and health care.



1
Introduction

Facility location is one of the most crucial strategic planning decisions
for governments, firms and non-profit organizations alike. A popular
saying in real estate is that the three most important attributes of a
property are its location, location, location. In marketing, place (i.e.,
location) is considered as one of the four building blocks (“four P’s”) of a
marketing strategy, along with price, product and promotion. For firms
selling tangible products and services alike, strategic location planning
is often the basis of firms’ competitive advantages. For retail stores and
service facilities, good location planning allows customers to access the
firm’s offering with low access or inconvenience costs (e.g., in the form
of travel cost or time), and thereby enhances customers’ willingness
to pay and the firm’s revenue. For back-end support facilities such
as distribution centers and warehouses, a carefully located network of
facilities serves as the backbone for efficient logistics operations. In the
public sector, choice of locations of public service facilities (or equipment,
as mobile facilities), such as hospitals, fire stations and ambulances,
plays a critical role in determining the level of service provided to the
public, such as response times to emergency calls.
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4 Introduction

While facility location can deliver positive strategic value to firms (or
organizations), it also poses significant planning risk in a large variety
of applications due to the often hefty resource commitment involved.
For example, in selecting a distribution center location, the firm needs
to acquire (purchase or engage in long-term lease) a piece of land,
construct (or acquire) a building, and equip the building with necessary
labor and equipment. As a result of this heavy commitment, facilities
are very costly to be relocated or closed after they start operating.
This high cost of recourse calls for foresight in planning, particularly in
forecasting the future operating environment (e.g., demand and costs)
and in understanding the long-term operating characteristics of, as well
as possible interactions between, the facilities.

Strategically, various considerations underpin the choice of facility
locations. Proximity to markets and/or suppliers, operational efficiency
of logistics operations (e.g., to replenish stock at the chosen retail store
locations), availability of skilled labor or natural resources, access to free
or low-tariff trade zones, presence of favorable tax or regulatory policies,
political stability of the region, etc., are examples of important factors
to evaluate when planning for a network of facilities. As Daskin (2011)
(Chapter 1) suggests, these include quantifiable and non-quantifiable
factors, and the focus of developing mathematical models is on the
former.

Among those quantifiable factors of consideration, the trade-off
between service level and cost pertains in the majority of location
planning scenarios. Service level refers to the accessibility of facilities by
their users, and is typically determined by factors such as response time,
and the costs and inconvenience of access. Note that these factors are
decreasing in the distances between users and facilities; that is, service
level is typically improved as a denser facility network is deployed.
Therefore, to maximize user accessibility, a ubiquitous location strategy,
where users never need to travel long distances to access the nearest
facilities, could be desirable. Examples of this strategy include those
adopted by Seven-Eleven in certain densely populated (especially Asian)
large cities, or Starbucks in major North American cities. While such
strategies make facilities extremely accessible, the obvious downside is
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the higher operational costs due to the lack of economies of scale in
operating each facility.

On the other hand, operating costs of the facility network depend
on a multitude of factors. In the majority of planning scenarios, the
overall costs consist of fixed and variable components. It is particularly
important to note that many facility types (e.g., factories, hospitals,
transportation terminals) employ expensive equipment and thus the
fixed component of costs is typically sizable. Therefore, the dominant
factor in the strategic consideration of operating costs is often economies
of scale. That is, operating costs can often be reduced by deploying
a network with fewer (i.e., sparser) facilities each handling a larger
volume of demand. An example is the “four corners” strategy commonly
adopted by North American retailers that operate small numbers of
distribution centers, typically near the major East and West Coast
ports, to serve demand from the entire continent.

Naturally, the goals of improving service level (which calls for lo-
cating more facilities) and reducing operating costs (locating fewer
facilities) are in conflict. The early literature focuses on developing
optimization models that attempt to balance these goals in different
planning contexts. We shall review some of the classical models in the
next section.

1.1 Brief Review of Classical Location Theory

In this section, we briefly review some of the most common location
models used in practice. Typically, the planner is faced with the prob-
lem of locating a number of facilities to serve a discrete set of spatially
dispersed customers. Many classical facility location models are formu-
lated to deliberately characterize the trade-off between access distance
and costs. Access distance refers to a measure of the distance between
customers and the facilities that they patronize, and reflects the design
quality of service. Two popular measures of access distance employed
in the literature are demand-weighted distance and coverage distance.
We shall review these concepts and some of the associated optimization
models below.
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1.1.1 Demand-Weighted Distance Models

Demand-weighted distance is a popular metric for access distance con-
sidered in facility location models. Particularly, it considers the weighted
average of distances between individual customer locations and their
respective assigned (or patronized) facilities. Often, the weights are
selected to be proportional to the volumes of demand (e.g., number of
potential consumers, forecasted sales volumes, etc.) at the customer
sites. The consideration of such weights allows the decision maker to
prioritize service provision to customers in the sense that facilities tend
to be located closer to more important customers with larger weights.

In the case where the costs of serving a customer location are
bilinear in the location’s demand volume and access distance, demand-
weighted distance reflects the system-wide operations costs of serving
all customers with the assigned facilities. One example is a supply chain
setting in which facilities are distribution centers (DCs) and customers
are retail stores. Demand-weighted distance, in this case, provides a
proxy for the total transportation costs under direct shipments, such
that the costs of shipping to one retailer location are approximately
given by the shipment volume (demand) times the shipment distance.
Below, we briefly review the classical location models that incorporate
demand-weighted distance objective.

The P -median problem, originally formulated by Hakimi (1964,
1965) is concerned with minimizing the demand-weighted distance of
serving a set of customers by locating a given number (P ) of facilities.
Note that in graph theory terminology, the absolute median of a network
is a point from which the sum of weighted distances to all nodes of
the network is the smallest. Thus, the problem of finding the set of P
locations that minimize the total demand-weighted distance is referred
to as the P -median problem. To formulate the problem, we define the
following notation:

Sets
I = set of customers;
J = set of candidate facility locations.
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Demand and Cost Parameters
µi = demand volume at customer location i, i ∈ I;
dij = distance between locations i and j, i ∈ I, j ∈ J
P = number (budget) of facilities to be located.

Decision Variables
Xj = 1 if facility is opened at location j ∈ J , 0 otherwise;
Yij = 1 if facility at j ∈ J is assigned to serve customer location i ∈ I.

The problem is to select, out of the candidate set J , some P fa-
cilities, and assign them to serve customers in set I. These decisions
are indicated by the Xj and Yij binary decision variables, respectively.
In the P -Median problem formulation provided below, the objective is
to minimize the total distance between customers and their assigned
facilities, weighted by demand (1.1). The constraints stipulate that
each customer location must be assigned to one facility (1.2), that such
assignment can only be made if said facility is opened (1.3), and that
the number of facilities opened equals P (1.4).

[P -Median] min
∑
i∈I

∑
j∈J

µidijYij (1.1)

s.t.
∑
j∈J

Yij = 1 for i ∈ I (1.2)

Yij −Xj ≤ 0 for i ∈ I, j ∈ J (1.3)∑
j∈J

Xj = P (1.4)

Xj ∈ {0, 1} for j ∈ J
Yij ∈ {0, 1} for i ∈ I, j ∈ J.

For various properties and solution heuristics of the P -median problem,
one may refer to, e.g., the recent review by Daskin and Maass (2015).

A closely-related model is the uncapacitated fixed charge facility
location model, which is often also referred to as the uncapacitated
facility location (UFL) model. In this model, the hard budget constraint
(1.4) is relaxed; instead, opening a facility at site j ∈ J incurs a fixed cost
of fj . By considering an objective function that combines the fixed costs
of opening facilities and the distance-based costs of serving customers,
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the UFL model may provide a more flexible characterization of the
trade-off between the budget of locating facilities and access distance.
Let ρ be the unit cost of serving one unit of customer demand per
unit distance between the customer and the assigned facility (e.g., unit
shipping cost). Then, the uncapacitated fixed charge location model
can be formulated as follows:

[UFL] : min
∑
j∈J

fjXj + ρ
∑
i∈I

∑
j∈J

µidijYij (1.5)

s.t. (1.2), (1.3).

It is also noted that both the P -median and UFL models do not consider
capacity of facilities (e.g., available land area for warehouses). Let Cj
be the maximum demand volume that can be handled by a facility at
j ∈ J . The capacitated fixed charge facility location model (CFL) is
formulated by adding the following capacity constraint, which limits
the volume of customer demand that can be assigned to a facility, to
the UFL model: ∑

i∈I
µiYij ≤ Cj for j ∈ J. (1.6)

In generalizing the UFL to the CFL model, one consideration of note
is the modeling of single versus multiple sourcing. In the UFL model,
one may note that the constraints that Yij must take on binary values
can be relaxed without loss. This is because, given binary values of Xj ,
the remaining problem in the Yij variables is a bipartite assignment
problem, which is a special case of the minimum cost flow problem.
Thus, the basic feasible solutions (in Y) are naturally integer-valued
(see, for example, Section 11.4 of Ahuja et al. (1993) for more detailed
discussions). This suggests that, under the UFL setting, it is always
optimal to serve all demand from a customer site to the same facility,
i.e., use single sourcing. In fact, it can be observed that it is always
optimal to assign all demand at a customer location to the nearest open
facility. In the CFL model, however, due to the additional capacity
constraint (1.6), such closest assignment may not necessarily be feasible.
Then, the distinction between single and multiple sourcing becomes
relevant. If the application allows demand volume at the same customer
site to be split in proportions (given by Yij) among multiple facilities,
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one may relax the binary constraints on Yij to simply 0 ≤ Yij ≤ 1,
which potentially improves the objective value.

1.1.2 Coverage Distance

The demand-weighted distance objective provides an average-case view
(over the set of customers) of the facility network, by considering the
aggregate service measure (measured by access distance) provided to
all customers, weighted by demand sizes. This may not be the most
appropriate objective in applications where the worst-case service pro-
vision to customers is of primary concern. For example, for emergency
medical services, the planning objective is often to maximize the vol-
ume or proportion of potential demand that can be served within a
prescribed time guarantee, rather than the average response time to
requests. Similar considerations arise in retail settings, where stores can
attract customers located within certain distances. In these applications,
the primary concern in planning is whether or not a facility is available
within a certain critical distance, which is referred to as the coverage
distance, to each customer.

To reflect whether a customer is located within the coverage distance,
denoted by dC , of a facility, we define the binary parameter aij = 1(dij ≤
dC), where 1(·) denotes the indicator function. Then, we can formulate
the set covering location model (Toregas et al., 1971), which aims to
locate the minimum number of facilities to cover all customers within
the coverage distance.

[Set Covering Location] : min
∑
j∈J

fjXj (1.7)

s.t.
∑
j∈J

aijXj ≥ 1 for i ∈ I (1.8)

Xj ∈ {0, 1} for j ∈ J.

The objective (1.7) is to minimize the number (or more generally,
opening costs) of facilities required to satisfy constraints (1.8) that
require at least one facility to be opened within the coverage radius
from each customer location. The set covering location problem has
important applications in the public sector. For example, the location
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of facilities such as hospitals, emergency medical services, police and
fire stations, and schools, all should incorporate the access radius as a
primary criterion in planning.

More generally, the set covering problem is one of selecting an
optimal (minimum-cost) set of subsets of a collection of elements under
the constraint that all elements have to be covered in at least one
selected subset. In the facility location context, the elements refer to
customer locations, and each feasible subset of elements is defined as
the group of customers within the coverage distance of each candidate
facility location. Thus, selecting among these subsets of customers is
equivalent to selecting among candidate locations. Furthermore, the
constraint that all elements are included in selected subsets is interpreted
as requiring all customers to be covered within the prescribed coverage
distance from some selected facilities.

The general formulation for set covering (Roth, 1969) is provided as
follows. Let I be the set of elements to be covered, and N ⊆ 2I be a
collection of feasible subsets of I. Then, for each member R ∈ N , we
define the binary decision variable ZR to indicate whether the set R is
selected or not, with the cost associated given by cR. Then, the general
set covering problem can be formulated as:

[General Set Covering] :
∑
R∈N

cRZR (1.9)

s.t.
∑

R∈N :i∈R
ZR ≥ 1 for i ∈ I (1.10)

ZR ∈ {0, 1} for R ∈ N.

Interestingly, the general set covering problem arises in the solution
procedure of some class of integrated location models with weighted-
distance objectives. We shall revisit this in Section 3.

One limitation of the set covering location problem is its strict
requirement that all customers must be covered, which was appropriate
in the original context studied by Toregas et al. (1971) of locating
emergency service facilities. While this requirement is often necessary
for public sector services, we note that it is often the case that the
marginal demand coverage for increasing the number of facilities is
decreasing. Thus, in settings involving planners in the private sector,
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it is often beneficial to leave out certain customers that are too costly
to cover. One may then consider the maximum covering problem that
maximizes demand coverage subject to a given budget to locate facilities,
formulated as follows:

[Max Covering Location] : max
∑
i∈I

µiUi (1.11)

s.t.
∑
j∈J

aijXj ≥ Ui for i ∈ I (1.12)

∑
j∈J

Xj ≤ P (1.13)

Ui, Xj ∈ {0, 1} for i ∈ I, j ∈ J.

In the above, the objective (1.11) is to maximize the volume of
demand being covered by the network of facilities, where binary decision
variable Ui indicates whether customer location i is covered. Constraints
(1.12) are similar to (1.8) in the set covering problem, but allow the
flexibility of not covering certain customer locations, in which case they
do not contribute to the objective (Ui = 0). Constraint (1.13) limits the
number of facilities to the budgeted number (P ).

1.1.3 Motivation for Integrated Modeling

The location models discussed so far focus on the fundamental trade-off
between facility location costs and access distance. Despite the strategic
importance of this trade-off, we may observe in a variety of applications
that this alone is inadequate to capture other important strategic
considerations in location design. Here, we provide an illustration based
on a supply chain design setting.

Consider the problem of deploying DCs to serve a geographical
market (e.g., the contiguous US). For illustration, we use the 49-node
data set provided by Daskin (2011). The 49 nodes, which serve as both
customer locations and candidate facility locations are the state capitals
of the 48 contiguous states and Washington DC. The demand rates
at each of these customer nodes are assumed to be proportional to
the state populations and the shipping costs are proportional to great
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circle distances1 between the cities. Following the classical modeling
approach, one might determine the locations based on the UFL model,
by considering location costs fj as the (annualized) construction and
operating costs of the DCs and ρdij as the shipping cost per unit demand
between two locations i and j. To illustrate the trade-off between location
and transportation costs, we vary the weight ρ = 1, 1.5, 2 on the unit
transportation cost and compare the optimal DC locations, as mapped
in Figure 1.1. Intuitively, a higher transportation cost weight leads to
locating more DCs, as higher unit transportation costs favors reducing
shipping distances from DCs to customers by increasing the density
of DCs. In general, the relative magnitudes of the location cost and
transportation cost weights determine the degree of consolidation of
the supply chain network.

(a) ρ = 1 (b) ρ = 1.5 (c) ρ = 2

Figure 1.1: UFL Solutions Under Different Transportation Costs

However, one may notice that the aforementioned consideration
does not fully capture the consolidation-deconsolidation trade-off in
strategic distribution network design. In supply chain management, it is
well known that facility costs, transportation costs and inventory costs
are the three major cost components driving network design decisions
(e.g., Chopra and Meindl, 2007). The conventional models focus on the
former two, but do not account for inventory costs. To illustrate why
this can be a problem, we extend the example by comparing the UFL
setting with two other alternative settings that consider inventory costs.

1The great circle distance is the shortest distance between two points on a sphere.
It is often used as a proxy for the straight-line distance between two cities, adjusted
for the Earth’s surface curvature.
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Figure 1.2 (a) shows the solution to the UFL problem for the dataset
(with ρ = 1), which consists of five opened facilities in Sacramento (CA),
Austin (TX), Tallahassee (FL), Springfield (IL) and Trenton (NJ). We
refer to the UFL problem as Setting 1 and the corresponding optimal
solution (set of chosen facilities) as Solution 1. To account for inventory
costs, consider a setting (Setting 2) in which demand is random (with
mean and standard deviation proportional to state population). Each
facility, once located, needs to carry enough safety stock to ensure a
95% Type-1 service level. Under this alternative model, we may solve a
stochastic optimization model to obtain the optimal solution (Solution
2) illustrated in Figure 1.2 (b). One can observe that there are now only
three DCs instead of five.

Figure 1.2: Maps of Location Plans under Different Model Settings

One may naturally wonder why locating three DCs rather than
five (at different locations) would be optimal as one considers safety
stock holding costs. One major reason is the effect of risk pooling
(Eppen, 1979). In particular, safety stock can be reduced by pooling
larger volumes of demand at smaller number of DCs. This “statistical”
economies of scale effect tilts the optimal balance in the consolidation-
deconsolidation trade-off and causes the optimal number of DCs to be
reduced. A more detailed discussion of such effects will be provided
in later chapters. To make things even more interesting, we consider
another alternative setting (Setting 3) in which facilities may transship
inventory among themselves to cope with random demand. Furthermore,
instead of satisfying a Type-1 service level, the safety stock level is chosen
to minimize a newsvendor-type cost function including holding, shortage,
and transshipment costs. The resulting optimal solution (Solution 3)
is provided in Figure 1.2 (c). Interestingly, not only is it optimal to
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locate five rather than three DCs, but the locations are also slightly
different from Solution 1; in particular, Montegomery (AL) is selected
instead of Tallahassee (FL). This is, in part, due to the consideration of
transshipment operations. First, with the possibility of sharing inventory
through transshipments, it is possible to share inventory and achieve
pooling benefits without the need to deliberately consolidate the network
of DCs (i.e., reducing to four DCs in the case of no transshipments).
Second, the specific locations of the five DCs is the outcome of the
trade-off between minimizing transportation costs to customers and
transshipment costs. The former encourages DCs to be located closer
to centers of customer clusters, and the latter encourages DCs to be
placed closer to each other. With the additional consideration of the
transshipment effect, the choice of Montegomery (AL) allows the set of
DCs to be, on average, more centrally located within the country.

Table 1.1: Percentage Performance Gaps of the Three Solutions Under the Three
Settings

Solution 1 Solution 2 Solution 3

Setting 1 0.00% 2.15% 0.23%
Setting 2 6.29% 0.00% 6.19%
Setting 3 1.95% 5.90% 0.00%

Note that the optimal strategy in one setting is suboptimal in the
others. In Table 1.1, we compare the performance of each of the three
solutions under each of the three settings. In particular, we report
the percentage cost increase of each solution over the optimal one in
the same setting. We observe that both Solutions 1 (6.3% worse than
optimal) and 3 (6.2% worse than optimal), which suggest opening five
DCs, perform substantially worse in Setting 2 than the optimal solution
(Solution 2). This suggests that failure to account for the risk-pooling
effect leads to significant cost increases. On the other hand, Solution 2
also performs relatively poorly under Setting 3, suggesting that failure
to account for transshipment opportunities at the network design stage
also leads to cost inefficiencies. Finally, although Solution 1 differs from
Solution 3 by the location of just one DC, it performs about 2% worse



1.2. Aims and Scope 15

under Setting 3. This further highlights that importance of selecting
the right set (on top of the right number) of facilities for the problem
setting on hand.

From this simple illustrative example, we can see that conventional
models that consider generic, distance-only objectives (e.g., the UFL
model) may fail to capture important design characteristics arising from
specific operations of certain facility types, leading to significantly sub-
optimal network designs. This potential shortcoming can be overcome
by enhancing the models with an integrated view of both the conceptual
cost-distance trade-off and the operating characteristics of the specific
facility types. This monograph is dedicated to reviewing the recent
developments of this line of research.

1.2 Aims and Scope

While we have briefly introduced the classical facility location models
in Section 1.1, we do not attempt to provide a comprehensive review of
this extensive literature. Our focus will be on integrated models that
incorporate operational features of facilities beyond distance-focused
considerations. For more comprehensive reviews and discussions of
the properties and solution strategies for classical models, as well as
various extensions, applications and modeling discussions, one may refer
to the excellent texts by Daskin (2011), Drezner (1995), Hamacher
and Drezner (2002), and Laporte et al. (2015). Likewise, while many
of the applications we shall discuss make use of important results in
research streams such as inventory theory to model operational features
of facilities, we also do not intend to provide a full review of these
areas beyond what is required to develop the integrated facility location
models. Interested readers may refer to, for example, Zipkin (2000), for
more complete discussion and references.

The study of integrated facility location modeling has a long history.
In the 1980’s, works by Daskin (1983), Eaton et al. (1985), and ReVelle
and Hogan (1989) consider the operational characteristics of mobile
facilities such as ambulances and the optimal deployment strategies
taking into account congestion probabilities. However, it was until the
2000’s when this research area sustained very rapid growth. Part of
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the reason was the significant computational challenges associated with
solving the integrated models, which had been difficult to overcome
before the recent advancements in computational power of computers
as well as optimization (particularly, stochastic and nonlinear integer
programming) theory. With the rapid growth, a myriad of modeling
approaches, solution methodologies and application areas have been
proposed by researchers and practitioners. The aim of this monograph
is to provide a timely review of some of these important developments.
With the exploding growth and huge volume of related research, our
review is inevitably restricted in scope and cannot be comprehensive.
As our aim is to review major modeling approaches, solution methodol-
ogy and some promising current and future research directions, some
application areas are inevitably omitted. For other recent reviews, we
refer interested readers to Shen (2007) and Mak and Shen (2011). It
is also notable that simulation-optimization techniques, designed for
ranking and selection problems where performances of alternatives can
be evaluated via simulation, are also a promising approach to the class
of problems that we consider, since the operational performance of
facilities can be simulated in detail. Our focus will be mainly on math-
ematical programming and analytical modeling approaches, and refer
interested readers to Fu (2002), Hong and Nelson (2009), and Luo et al.
(2015) (and the references therein) for this alternative methodology.

In this monograph, we provide discussion on four aspects of the
research stream. In Chapter 2, we discuss several popular modeling
approaches employed by researchers to model integrated location prob-
lems, such as nonlinear integer programming, stochastic programming
and continuous approximation. In Chapter 3, we provide a brief account
of some promising solution methodologies, including decomposition
methods and conic optimization methods. Then, in Chapters 4 and 5,
we draw from the broad range of applications of the integrated model-
ing framework in the classical supply chain design context and several
other emerging application domains, respectively. Finally, we conclude
the volume and discuss some promising future research directions in
Chapter 6.
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1.3 Notation

Throughout the monograph, we use boldface letters to represent matrices
or vectors of variables denoted by the same letters. For example, Y is
the matrix with components being the Yij ’s. Furthermore, x′ denotes
the transpose of column vector x, and x′y denotes the inner product of
column vectors x and y.



2
Integrated Modeling Approaches

In this section, we first provide a review and some discussion on some
major modeling approaches commonly employed to formulate integrated
models for facility location. Following the previous discussion on integer
programming formulations for classical location models, the aim of
this section is to provide readers with some ideas about how further
techniques may be required to capture various operational features of
facilities. In each section, we illustrate the key modeling approach with
a specific example from the literature. With this discussion, we hope
that (especially beginner) readers will have some preliminary ideas of
how to formulate models for their problems of interest. Afterwards, in
Chapter 3, we shall discuss how these models often require the use of
certain computational methodologies.

2.1 Nonlinear Integer Programming

As discussed previously, the distance-concerned models, such as those
introduced in Section 1.1, may fall short of capturing the important
operational characteristics of facilities. We first discuss a general exten-
sion of the UFL model that reflect the costs incurred in the tactical and

18



2.1. Nonlinear Integer Programming 19

operational phases of managing the network of facilities. In particular,
we may use a function G(Y) to denote the (non-distance-dependent)
tactical and operational costs for the network of facilities, given demand
assignments according to Y. Then, we may generalize the objective
function of the UFL as:

min
∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

ρµidijYij +G (Y) . (2.1)

The key feature in formulation is the function G(·). Operational
characteristics of facilities can be reflected by selecting appropriate
functional forms. As shall be discussed later, much of the literature
focuses on functional forms that are separable by j, i.e., G (Y) =∑
j∈J Gj(Yj). Separability indicates that the facilities do not interact in

their tactical and operational decisions, beyond dividing up the market
in the strategic phase (i.e., with the values of Y determined). For cases
where facility operations do interact, such as in the case discussed
in Section 1.1.3 where facilities perform lateral transshipments, the
function G(·) will not be separable.

By selecting appropriate forms of the G(·) function, operational
characteristics such as economies (or diseconomies) of scale in demand
volume can be modeled. Throughout this monograph, we shall discuss
various models that follow from selecting different functional forms
of the G(·) function. To begin, we consider the supply chain design
(SCD) model proposed by Shen et al. (2003), which was among the
first integrated facility location model for supply chain design in the
literature. In this model, the inbound transportation costs, as well as
cycle and safety inventory holding costs incurred at DCs are considered
and modeled in the G(·) function. From classical inventory theory (e.g.,
Zipkin, 2000; Axsäter, 2007), these cost factors exhibit economies of
scale (through economic ordering cycles and risk pooling), in the sense
that the marginal cost to serve incremental demand volume tends to
decrease. To capture this, Shen et al. (2003) develop a model in which
the function G(·) is equivalent to a concave function in the demand
volume assigned to each DC.

We begin the discussion by modifying and defining the following
parameters:
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Demand Parameters
µi = Mean (daily) demand at retailer i;
σ2
i = Variance of (daily) demand at retailer i;
α = Type 1 service level, i.e., target probability of having no stock-outs;
zα = Standard normal z-score corresponding to α, where P (z ≤ zα) = α;
L = replenishment lead time for DC.

Cost Parameters
β = Weight factor associated with transportation cost;
θ = Weight factor associated with inventory cost;
Fj = Fixed (administrative) cost of placing an order at warehouse j;
gj = Fixed shipping cost from supplier to warehouse j;
āj = Variable shipping cost (per unit) from supplier to warehouse j;
h = Inventory holding cost per unit per year;
χ = Number of days in a year.

Shen et al. (2003) consider the case where demand volumes at
retailers follow independent normal distributions. In their model, in
addition to the fixed facility location costs and DC-retailer shipping
costs as considered in the UFL model, they incorporate the costs of
holding and replenishing inventory at the DCs in the objective function.
In particular, they consider each DC j to replenish inventory following
continuous review (r,Q) policies, with reorder points determined based
on Type 1 service level α. For tractability, they adopt the approximation
proposed by Axsäter (1996) of determining the cycle order quantities
using the EOQ as described below.

The mean daily demand handled by DC j is given by Dj =∑
i∈I µiYij . Suppose there are n replenishment cycles (where n is to be

optimized) in a year. Then, the order quantity per cycle is, on average,
χDj/n and the shipment cost per replenishment order is gj + ājχDj/n,
which consists of the fixed and variable components. The average cycle
inventory can be approximated by χDj/(2n). The holding and replen-
ishment costs involved in an ordering cycle is then:

Fjn+ β(gj + ājχDj/n)n+ θhχDj/(2n).
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Optimizing over n, we obtain the following as the optimal number
of order cycles and the corresponding cycle holding and replenishment
costs:

n∗ =
√

θhχDj

2(Fj + βgj)

C∗cycle =
√

2θhχDj(Fj + βgj) + βājχDj . (2.2)

Furthermore, to maintain a Type-1 service level of α, the required
safety stock is given by zα times the standard deviation of demand
during lead time, i.e.,

√
L
∑
i∈I σ

2
i Yij . Thus, the annual holding cost for

the safety stock at warehouse j is then given by:

θhzα

√
L
∑
i∈I

σ2
i Yij . (2.3)

Incorporating the above inventory-related costs to the UFL model,
we obtain the following optimization model:

[SCD :] min
∑
j∈J

[
fjXj +

∑
i∈I

(dij + aj)βχµiYij

+
√

2θh(Fj + βgj)
√∑
i∈I

χµiYij + θhzα

√∑
i∈I

Lσ2
i Yij


=

∑
j∈J

fjXj +
∑
i∈I

d̂ijYij +Kj

√∑
i∈I

µiYij

+q
√∑
i∈I

σ2
i Yij

 (2.4)

s.t.
∑
j∈J

Yij = 1 for i ∈ I (2.5)

Yij −Xj ≤ 0 for i ∈ I, j ∈ J (2.6)
Xj ∈ {0, 1} for j ∈ J (2.7)
Yij ∈ {0, 1} for i ∈ I, j ∈ J (2.8)
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where:

d̂ij = (dij + aj)βχµi
Kj =

√
2θh(Fj + βgj)

q = θhzα
√
L.

Recall in our discussion of the CFL and UFL models that, whenever
the capacity constraint is not violated, it is optimal to determine the Yij
variables by assigning each retailer to the nearest open DC. However,
this property does not necessarily hold for the [SCD] model, as pointed
out by Shen et al. (2003) and Daskin et al. (2002). In particular, due
to the consideration of inventory costs, it may be optimal to assign a
retailer to a DC not necessarily nearest to it such that better inventory
pooling is achieved and the overall costs can be reduced. They identify
examples that retailers may not even be assigned to DCs at the same
locations (i.e., when dij = 0). Interestingly, they also show that the
nearest-assignment property necessarily holds at the optimal solution
when the mean-variance ratio of demand is equal for all retailers (i.e.,
σi/µi = γ for all i ∈ I). This condition is valid, for example, when
demand arises from Poisson processes, in which case γ = 1. Under this
condition, the objective function of the [SCD] model can be simplified
as:

min
∑
j∈J

fjXj +
∑
i∈I

d̂ijYij + K̂j

√∑
i∈I

µiYij

 (2.9)

where K̂j = Kj + q
√
γ.

Formulations in the form of (2.4) or (2.9) involve nonlinear (square
root) terms. In general, as the operational characteristics of facilities
vary across applications, it is not guaranteed that the G(·) function is
convex (or can be represented using convex optimization formulations).
Therefore, such formulations may not generally be solvable by standard
integer linear or convex programming branch-and-bound methods avail-
able in commercial solver packages (such as CPLEX or Gurobi). In the
literature, one main research focus is on developing efficient solution
algorithms for these problems by exploiting problem-specific structural
properties. As shall be discussed in Section 3.1, efficient approaches for
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solving the [SCD] problem exploit the concavity property of the square
root terms in 3.1. In Section 3.2, we also discuss how the [SCD] problem
can be transformed into mixed-integer second order cone programs
(MISOCP), whose continuous relaxations are convex conic optimiza-
tion problems, and how to accelerate solution algorithms with specific
cutting planes.

2.2 Stochastic Programming

In various applications, such as in supply chain network design, tactical
planning for facilities are often subject to substantial uncertainty. The
prime example is inventory planning for DCs subject to demand uncer-
tainty. In light of such uncertainties, operating flexibility is crucial for
the facility network. Such flexibility introduce mutual dependence in
the tactical-phase operating characteristics among facilities, and thus,
require non-separable forms of function G(·) to be modeled appropri-
ately. Furthermore, to reflect planning uncertainty, it is common to
model the function G(·) using a stochastic programming representation.
This approach is particularly useful when the operational characteristics
of facilities involve repeated re-optimization of certain decisions (e.g.,
routing of shipments) over discrete time epochs in the future, where
uncertainty in the operational environment persists.

In this section, we illustrate the stochastic programming modeling
approach based on the example discussed in Section 1.1.3 in which
facilities hold inventory to meet stochastic demand, and are allowed to
share inventory by performing lateral transshipments to better avoid
shortages. This application fits the stochastic programming approach
very well, because the operational phase of the problem involves re-
peated optimization of inventory, transshipment and demand allocation
decisions. Over the long run, a stochastic program with an expected
cost objective could be used to model the long-run average operational
performance of the facility network.

To model stochasticity, we use the random variable D̃i(ω) (with mean
µi and standard deviation σi) to denote the random demand at customer
location i, where ω ∈ Ω denote a specific realization or “scenario” of
random events governing demand outcomes. To meet random demand,
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we define Sj as the inventory level held at DC j. We define decision
variables Vjk(ω) to denote the amount of inventory transshiped from
facility j to facility k under scenario ω. For transshipments from j to
k, a transportation cost of τjk per unit is incurred. If demand cannot
be fully satisfied in a scenario, there may possibly be a shortage at
DC j, denoted by the decision variable Bj(ω). Each unit of shortage
(assumed to be backordered for simplicity) will incur a penalty of p.
Then, the cost components related to inventory and transshipments can
be formulated as follows:

G(Y) = min Eω

∑
j∈J

 ∑
k∈J\{j}

τjkVjk(ω) + pBj(ω)


+
∑
j∈J

rSj (2.10)

s.t. Sj +
∑

k∈J\{j}
[Vkj(ω)− Vjk(ω)]

=
∑
i∈I

Di(ω)Yij −Bj(ω) for j ∈ J, ω ∈ Ω (2.11)

Vjk(ω) ≥ 0 for j ∈ J, k ∈ J \ {j}, ω ∈ Ω
Bj(ω) ≥ 0 for j ∈ J, ω ∈ Ω.

In the above, we consider transshipment operations for a single
period, which enables the problem to be formulated as a two-stage
stochastic program. The objective (whose optimal value yields G(·)) is
to minimize expected costs of transshipments and shortage, plus the cost
of carrying inventory at facilities (2.10). The constraints (2.11) impose
material flow balance at facilities, by requiring the stocking levels plus
net inbound transshipments to equal realized demand less shortages.
Note that under the assumption that shortages are backordered, the
expected DC-to-customer shipping costs correspond to the (mean)
demand-weighted distance, and thus can be reflected by the same∑
i∈I d̂ijYij term considered in the [SCD] problem.

Remark 2.1. In inventory theory (e.g. , Robinson, 1990), it is known
that the optimal inventory control policies of transshipment problems
exhibit stationarity under stationary problem parameters and certain
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regulatory conditions. Therefore, one can think of the above single-
period formulation as modeling the long-run average costs for a periodic-
review system operated over a longer time horizon.

Substituting the above formulation (2.10) in (2.1), one can obtain
an integer stochastic linear programming formulation for the supply
chain design problem with transshipments. This two-stage model can
be interpreted as having a strategic phase, in which the network design
is to be determined subject to demand uncertainty, and a tactical phase,
in which transshipments and shipping decisions are made in response to
evolving demand information. Due to high dimensionality, this class of
integer stochastic programs are often difficult to solve. We shall discuss
some possible solution strategies, such as decomposition methods, for
similar problems in Section 4.5.

The modeling approaches discussed thus far focus on mathematical
programming methods. As shall be discussed in future chapters, the
main focus of the analysis of such models is to obtain numerical solutions
computationally. In the next section, we shall review a complementary
modeling approach that is more amenable to analytical studies.

2.3 Continuous Approximation

Fundamentally, the optimal location strategy is governed by trade-offs
among various strategic forces, including the distance-cost trade-off
discussed in Chapter 1. Understanding of the underlying trade-offs must
be developed to assist managers to choose the best strategies under
different scenarios. The models discussed so far are all formulated as
(stochastic, linear or nonlinear) integer programming problems. The
fact that they are extensions of the classical models discussed in Section
1.1 imply that these problems are generally NP -hard. Much of the
literature has focused on computational approaches, and on designing
efficient solution methods in particular. As to be discussed later, many
of these algorithmic studies have made possible the investigation of
interesting case studies regarding various applications based on specific
data sets. This approach is best suited for producing a detailed and
implementable design that is (close to) optimal, given a set of input
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data specific to the application. However, one limitation is that these
integer programs typically do not exhibit analytical tractability, and
thus qualitative managerial insights can rarely be obtained by analyzing
the models’ properties.

To remedy the analytical challenges, researchers have adopted an
alternative continuous approximation (CA) approach that is more
amenable to analytical (as opposed to computational) studies. The
modeling philosophy behind this approach can be summarized as fol-
lows (Daganzo, 2005): Using concise data summaries and analytical
models in place of detailed data and numerical algorithms, it is possible
to formulate closed-form representations of design and operational cost
of facility networks. These models characterize the most important
characteristics of the location design problem, while abstracting out
implementational details. The approximations are parsimoniously devel-
oped to ensure analytical tractability and, at the same time, to capture
the underlying trade-offs inherent to the problem. Then, managerial
insights can be drawn by analyzing the mathematical structures of the
models.

The key starting point of the CA modeling approach is to consider
a generic problem in a large and spatially homogeneous region, on
which customers are evenly spread with some density. That is, we start
with a problem that abstracts away spatial heterogeneity, because such
level of detail is only required for implementational purposes and often
does not alter the fundamental trade-offs for many problems. Naturally,
because the region is homogeneous, the optimal facility locations will
also be evenly spaced. This is the key to the approximation approach,
as this allows us to optimize the density of facilities rather than specific
locations. Therefore, CA models capture scale effects of the facility
network, but ignores spatial heterogeneity. As to be discussed later,
this limitation can be overcome numerically for cases where problem
parameters vary slowly over space.

To illustrate the CA modeling approach and its power in generating
qualitative insights, we consider the following alternative modeling
scheme for the [SCD] problem formulated in Section 2.1. Instead of
a network consisting of retailer and candidate facility locations, we
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consider an infinite homogeneous plane on which retailers are uniformly
located with a density of δ retailers per unit area. As detailed in Daganzo
(2005), one can consider either the case where retailers are located at
constant distance apart or one where they are randomly located with
uniform density. Each retailer faces independent stochastic demand
following a Poisson process over time, with rate µ. Because the problem
is homogeneous, we can consider DCs to be located at grid points of the
plane (Figure 2.1). A uniform location scheme is optimal if retailers are
also located at grid points (with a different density), and will be optimal
in the expectation sense for the case where retailers are randomly
located.
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Figure 2.1: Segment of Service Region with Square-shaped Primary Influence Areas

We also assume that shipping distances are measured using the
` − 1 metric, that is, the distance between two points on the plane,
with coordinates (x1, y1) and (x2, y2) respectively, is considered to be
|x1 − x2| + |y1 − y2|. This is also known as the Manhattan distance
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metric and is useful for modeling travel distances in cities, where the
metric measures distance over a grid-shaped road network. Under this
metric, it can be shown that the optimal allocation of customers to
facilities, such that customer-facility distances are minimized, follow the
rotated square-shaped layout shown in Figure 2.1. Following this layout,
the separation between every two adjacent DCs is S/

√
2 miles, meaning

that each DC has a square-shaped influence area of S2/2 square-miles.
This greatly simplifies the problem, as we only need to optimize the
density of DCs instead of their specific locations. As a result, we are
able to formulate the problem with a single decision variable, S.

 

Square-shaped influence areas minimize 

average distance between customers and 

facilities under       1 metric 

Square-shaped influence areas minimize 

average distance between customers and 

facilities under       2 metric 

Figure 2.2: Optimal Partition of Influence Areas under `− 1 and `− 2 Metric

Remark 2.2. One may note that, under the ` − 2 metric, i.e., where
the distance between two points is given by the Euclidean distance√

(x1 − x2)2 + (y1 − y2)2, a hexagonal (instead of square) partition of
the plane is optimal (e.g. Cui et al., 2010). See Figure 2.2 for an
illustration. Newell (1973) shows that different uniform partitioning
schemes lead to cost models that only differ by constant multiples,
and uses numerical examples to point out that exact shapes do not
matter much as long as they are relatively round shaped. For example,
the average travel distances under hexagonal, diamond and square
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arrangements only differ by a few percent. Rather than the exact shape,
Newell suggests that the researcher should focus on optimizing the
scale or the size of the influence areas. In this analysis, details such as
the exact shapes of influence areas are not critical issues in high-level
planning and therefore simplifying assumptions can be made about
them.

The problem is to determine the density of facilities (equivalently, the
value of S), to minimize the continuous analog of objective function (2.9),
which consists of three components: fixed location costs, transportation
costs and inventory costs. Note that, because the service region in
question is an infinitely large plane, the total costs will be infinitely large.
Therefore, it is conventional to consider average costs per retailer (or
equivalently, per unit area). As shall be discussed later, this convention
makes it easier to extend the models for spatially heterogeneous cases.
We briefly discuss how these components are modeled below.

We first note that, as each DC serves an influence area of S2/2,
there are (on average) S2δ/2 retailers served by each DC. Conversely,
the fixed cost incurred by locating each DC, denoted by f (because
all locations have the same cost, the index j is dropped), is shared
among S2δ/2 retailers on average. Thus, the average fixed location cost
per retailer is given by 2f

δS2 . Second, it can be shown that the average
`− 1 distance between any point in a square-shaped influence area and
the DC in the center of the square is equal to S/3. Per unit time, an
average of µ units are shipped from a DC to a retailer. Therefore, using
d̂ to denote the unit transportation cost, the average transportation
cost incurred by a retailer per unit time is given by d̂µS/3. Finally,
following (2.9), the inventory cost incurred at each DC is given by a
constant K times to the square root of the mean (and thus variance
under Poisson demand) of demand volume handled, i.e., is equal to
K
√
δS2µ/2 given that the DC serves δS2/2 retailers. Dividing this cost

among the retailers, the average inventory cost per retailer is given
by K

S

√
2µ/δ. Combining the above, the total supply chain costs as a

function of S, denoted by CSCD(S), become:

CSCD(S) = 2f1
δS2 + d̂µS

3 + K

S

√
2µ/δ (2.12)
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and the continuous approximation version of problem [SCD] is formu-
lated as minS>0 CSCD(S). It can be directly observed that CSCD(S) is
a convex function, and thus can be minimized by solving for the first
order condition, which yields the following.

Proposition 2.1. The unique minimizer of (2.12) is given by the unique
positive real root to:

S3 −
hzα
√
µ

2k1v
S − f1V

4k1δv
= 0.

Recall that the motivation for employing the CA methodology is
to gain qualitative understanding on the underlying trade-offs of the
facility network design problem. From equation (2.12), the basic trade-
offs are evident. The fixed location cost term and inventory cost term
are decreasing (and convex) in S, meaning that these cost factors create
forces that push for consolidation (larger S or lower density of DCs).
The reason is that both cost components exhibit economies of scale: the
average location cost per retailer can be lowered if the DC serves more
retailers; and the inventory costs can be reduced by pooling demand,
both through saving on inbound transportation cost under the EOQ
setting and through reduction of safety stock with risk pooling. On
the other hand, the transportation cost term is increasing (linearly) in
S, creating a force pushing for deconsolidation (smaller S). From this
trade-off, we can immediately observe the effect of taking inventory
costs into consideration. Without the inventory cost term, the optimal
value of S will be smaller, i.e., failure to account for inventory cost
considerations would lead to under-consolidation of the DC network.
This observation was made by Shen et al. (2003) based on extensive
computational studies using the [SCD] model. With the CA framework,
the same conclusion can be obtained using intuitive algebraic arguments.

More generally, we evaluate the effect of the problem parameters on
the optimal solution characterized in Proposition 2.1. The case where
inventory costs are neglected is the special case where K = 0.

Corollary 2.1. The effects of input parameters on the minimizer of
(2.12) are summarized in Table 2.1.
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Table 2.1: Effect of Input Parameters on Optimal Solution

Increase in Parameter Separation S

Retailer Density δ ↓
Mean Retailer Demand µ ↓

Fixed Cost f ↑
Inventory Cost Rate K ↑

Transportation Cost Rate d̂ ↓

We have used the CA counterpart of [SCD] as an example to high-
light the potential of the CA approach to greatly simplify the problem
while retaining the structural characteristics of the problem for quali-
tative analysis. The resulting model can be solved and analyzed using
elementary calculus. However, in certain applications, it requires special
techniques to develop such tractable models. A very useful tool, known
as dimensional analysis, will be discussed in Section 3.3.

Despite its modeling power, the CA approach suffers from the down-
side of not directly prescribing implementable solutions. Generally,
this approach is more suited for theoretical analysis of strategic forces
underpinning a network design problem, rather than data-driven imple-
mentation exercises. The reason that the results from CA models are not
directly implementable is that the analysis focuses on uniform regions
of homogeneous characteristics (e.g., geographical density of retailers
and demand per retailer). Nevertheless, we remark that for problem
instances where cost and demand parameters vary slowly spatially, it is
possible to obtain high quality solutions for nonhomogeneous problems
by making use of the same cost model. The basic idea is to approximate
the local cost at each point in the region by assuming that this point
belongs to an infinite homogeneous region with uniform problem pa-
rameter values equal to the local ones. By applying this approximation
point-wise, we obtain a spatial cost function defined over the region of
interest. Then the average cost over the region can be approximated by
the spatial average of this cost function.

For example, consider a region R, where the demand rate per retailer
µ(x) and the density of retailers δ(x) are functions of the location of
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point x ∈ R. Then the local optimal DC separation S∗(x) at point
x can be approximated by substituting µ = µ(x) and δ = δ(x) into
the condition in Proposition 2.1. Similarly, C(S∗(x)) approximates
the local cost at point x. Integrating this point-wise approximate cost
function over the region R with density function δ(x), the total cost is
approximated by:

Total cost for region R ≈
∫
x∈R

C(S∗(x))δ(x)dx. (2.13)

Daganzo (2005) and Ouyang and Daganzo (2006) explain in detail
why this approximation approach gives rise to high quality solutions
to complicated logistics problems. In particular, the quality of the
approximation is very high when the location-specific parameters (µ(x)
and δ(x) for example) vary slowly with location x. Note that, although
the uniform problem does not admit a simple closed-form solution, the
integration in (2.13) can be easily implemented numerically.

With such an approximation scheme, the local solution at any
point can be approximated point-wise using the optimal solution from
an infinite homogeneous problem with parameter values equal to the
local ones. Therefore, the relationship between the local solution and
local parameter values at any point in a nonhomogeneous region is
similar to that between the solution and parameter values in an infinite
homogeneous problem. This suggests that any comparative statics
results can be interpreted as the impacts of different local environmental
conditions on the local optimal supply chain design, which further adds
to the value of the qualitative insights obtained based on analyzing the
homogeneous model.

2.4 Discussion

The nonlinear integer programming modeling approach follows natu-
rally from classical integer programming models for facility location.
As one incorporates operational features, such as inventory carrying
dynamics, into the model, nonlinear terms are introduced. In most
cases, this makes the problem less tractable. Traditionally, nonlinear
terms are often avoided by many modelers due to their intractability
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by standard methods (e.g., branch and bound methods with simplex
subroutines). With advances in solution approaches to mixed integer
nonlinear problems, whether a good solution can be obtained efficiently
depends greatly on the functional form of the nonlinear terms intro-
duced in the objective function and constraints. Thus, when formulating
this class of models, the modeler ought to be cautious about the en-
suing solution approach (some of which will be reviewed in Chapter
3) and computational tractability. Certain functional forms (e.g., con-
vex, concave, submodular), in the right models, would allow efficient
problem-specific algorithms to be developed by exploiting special struc-
ture. Other functional forms (e.g., involving conic constraints) could be
solved readily with standardized solvers. Often, developing effective and
efficient models involves evaluating the trade-off between the accuracy
of capturing modeling features versus computational efficiency. Overall,
the nonlinear modeling approach constitutes a key building block for
developing rich models for facility location. As shall be seen in Chapter
5, this approach is promising in modeling many recent applications in
different emerging domain areas.

Stochastic programming methods are important for modeling the
risk aspect of strategic facility location problems. With advances in the
understanding and modeling of risk measures, stochastic modeling of
facility location problems is reaching beyond the risk neutral (expected
value objective) view presented in Section 2.2 to incorporate other risk
preferences of the decision maker. The use of convex risk measures, such
as the conditional value-at-risk (which shall be discussed in Section
4.2.2), often allows risk preferences to be captured while preserving
computational tractability of the problem. Often, to incorporate such
risk measures, it is possible that the resulting model becomes nonlin-
ear. Therefore, as discussed above for the case of nonlinear integer
programming, the modeler should be cautious about the computational
tractability aspect when attempting to build a rich risk preference
model.

Compared with the mathematical programming techniques discussed,
the CA approach has received less attention in the operations manage-
ment community until fairly recently. This may have to do with the
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strong development of research in operations economics (e.g., Cachon,
2012), which focuses on developing qualitative managerial insights into
operations problems using economic modeling. For facility location
problems, mathematical programming approaches are less amenable
to the analysis of problem properties with managerial implications,
because the combinatorial nature of integer programming problems,
in most cases, limits researchers to purely computational analyses due
to the discrete nature of decisions. CA models allows modelers to re-
lax the confounding combinatorial problem and investigate instead
an approximation in which the objective function and constraints are
characterized by smooth functions of a concise number of continuous
decision variables. We believe that advances in this approach open up
new opportunities in developing insights into important location and
network design problems, many of which were previously considered to
be analytically intractable. Overall, this development helps bridge the
divergence of the more computation-focused “operations research” and
the more insights-driven “operations economics” branches of research in
the context of facility location. Recently, an increasing number of papers
using this modeling approach has appeared in top journals, including
Cui et al. (2010), Lim et al. (2013), Cachon (2014), Lim et al. (2016),
and Belavina et al. (2016). We believe that this is a promising direction
to pursue.



3
Solution Techniques

After reviewing some popular modeling strategies employed in integrated
location models in Chapter 2, we shall provide some discussion on
common solution methodologies required to solve these problems. One
will see that development of efficient solution schemes relies critically on
the mathematical structure of the optimization formulation. Therefore,
our aim of providing the discussions in Chapters 2 and 3 is to help
readers identify strategies to come up with formulations amenable to
the design of efficient solution approaches.

3.1 Decomposition Methods

As extensions of the classical facility location problems, the integrated
location problems are typically NP -hard. For example, the [UFL] prob-
lem is a special case of the [SCD] formulation (2.9) with K̂j = 0 for all
j ∈ J . Therefore, it is natural to attack integrated problems with similar
solution approaches that exhibit proven success toward the classical
problems. In particular, decompositions methods, such as Lagrangian
relaxation and branch and price, are popular methods to develop effi-
cient solution algorithms for classical methods, and have been widely

35
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adopted to tackle integrated problems. In this section, we discuss these
approaches using problem (2.9) as an example. The branch and price
and Lagrangian relaxation algorithms for this problem are developed
by Shen et al. (2003) and Daskin et al. (2002), respectively.

3.1.1 Branch and Price

The branch and price approach for the [SCD] problem is built on the
observation that the problem can be reformulated as a general set
covering problem (1.9). In particular, the set of elements to be covered
is the set of customer locations I, and the collection of feasible subsets
is given by N = 2I . The cost associated with each subset R ∈ N is
given by the cost of serving the subset of customers with the facility
that yields the lowest fixed location, shipping and inventory costs, that
is, cR = minj∈J ĉR,j where

ĉR,j = fj +
∑
i∈R

d̂ij + K̂j

√∑
i∈R

µi.

Note that the set covering formulation (1.9) is a linear integer
program. Thus, the reformulation gets rid of nonlinearity in the objective
function (2.9), at the expense of introducing an exponential number of
variables ZR, as the set N is exponential in size. For integer programs
with polynomial number of constraints and exponential number of
variables, branch and price (e.g., Barnhart et al., 1998) is often an
effective solution strategy. This approach builds on the standard branch
and bound algorithm by solving the continuous relaxation of the integer
problem at each branch and bound node (which is a linear program
with an exponential number of variables) using a column generation
procedure, which we discuss below.

The column generation procedure tackles the continuous relaxation
problem iteratively, first by including only a small subset of variables
and then subsequently adding more. Let [SCR] denote the continuous
relaxation of (1.9), obtained by replacing the constraints ZR ∈ {0, 1}
with 0 ≤ ZR ≤ 1 for R ∈ N . We first begin with a manageable subset
N ′ ⊂ N and exclude all R ∈ N \ N ′ from the formulation. The cost
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parameters cR are computed for each R ∈ N ′. In the column generation
procedure, we solve the following restricted formulation with a subset
N ′ ⊆ N of variables, referred to as the master problem, while updating
the subset N ′ iteratively:

[Master Problem] :
∑
R∈N ′

cRZR (3.1)

s.t.
∑

R∈N ′:i∈R
ZR ≥ 1 for i ∈ I (3.2)

ZR ∈ {0, 1} for R ∈ N. (3.3)

Remark 3.1. To ensure feasibility of the master problem, the initial set
N ′ must include elements that collectively include all i ∈ I. One simple
way to guarantee so is by including all |I| singleton subsets of I in N ′.

Note that the optimal objective value of the master problem is an
upper bound on that of [SCR], because the former is equivalent to the
latter with the additional constraints ZR = 0 for R ∈ N \N ′. Let the
optimal dual solution values corresponding to (3.2) be denoted by πi
for each i ∈ I. Note that the optimal solution to the master problem
can be viewed as a basic feasible solution to the original continuous
relaxation problem [SCR], at which ZR for R ∈ N \N ′ are not in the
basis. To obtain a solution with lower cost, one may identify nonbasic
variable(s) with negative reduced cost(s) to enter the basis. Note that
such nonbasic variables must be among those ZR with R ∈ N \ N ′,
because otherwise the current solution would not be optimal for the
master problem. Therefore, if the reduced cost for any variable zR,
R ∈ N \ N ′, is negative, then including said variable in the master
problem can possibly improve the optimal solution. On the other hand,
if all variables have nonnegative reduced costs, then the current solution
is optimal to [SCR].

Each iteration of the column generation algorithm proceeds by
identifying the variables (columns) with the lowest reduced costs, and
adding the corresponding subsets into N ′ to expand the master problem.
The reduced cost of the variable ZR is given by cR −

∑
i∈R πi. The
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problem of identifying the subsets R corresponding to the minimum
reduced costs, referred to as the pricing problem, can be formulated as
follows:

[Pricing Problem] : min
R⊂I

min
j∈J

fj +
∑
i∈R

(d̂ij − πi) + K̂j

√∑
i∈R

µi. (3.4)

Note that the pricing problem is decomposable by J . That is, one
can solve the problem

min
R⊂I

fj +
∑
i∈R

(d̂ij − πi) + K̂j

√∑
i∈R

µi (3.5)

for each j ∈ J separately, and identify the j that yields the lowest
objective value. If this minimum value is negative, the variable ZR cor-
responding to the optimal subset R in (3.4) can be added to the master
problem. Alternatively, because any column with negative reduced cost
can potentially lead to cost improvements, one may add multiple ZR
variables corresponding to those R in (3.4) that yield negative reduced
costs.

Next, we focus on solving (3.5) efficiently. We first provide an
nonlinear integer programming reformulation as follows:

min
y∈{0,1}|I|

∑
i∈I

b̂iyi + g(
∑
i∈I

ĉiyi) (3.6)

where b̂i = d̂ij −πi, ĉi = K̂2
j µi and g(x) =

√
x. Note that choosing a set

R in (3.5) is equivalent to setting yi = 1 for i ∈ R and yi = 0 for i /∈ R.
We note that problem (3.6) exhibits a knapsack-like trade-off. In

particular, a negative value of b̂i (the gain of including element i) is
offset by the increase in cost due to the square root term (which can
be interpreted as a soft knapsack capacity constraint). Similar to the
(continuous relaxation of the) knapsack problem, there exists a simple
sorting algorithm that solves (3.6), as characterized by the following
results. To begin, we re-order the indices i in the set I by sorting its
elements in increasing order of b̂i/ĉi, such that b̂1/ĉ1 ≤ · · · ≤ b̂m/ĉm <

0 ≤ b̂m+1/ĉm+1 ≤ · · · ≤ b̂|I|/ĉ|I|. Then, the following results (Ozsen
et al., 2008; Mak and Shen, 2009) hold.
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Proposition 3.1. For any increasing function g(·), there exists an
optimal solution to the continuous relaxation of (3.6), denoted by
(y∗1, · · · , y∗|I|), that satisfies:

1. y∗i = 0 for i = m+ 1, · · · , |I|;

2. 0 < y∗i < 1 for at most one i ∈ I;

3. If y∗k > 0 for some 1 ≤ k ≤ m, then y∗i = 1 for 1 ≤ i ≤ k − 1.

Proof. Part 1 follows directly from the fact that g(·) is increasing.
Thus, increasing the value of yi from 0 to ε > 0 will increase both the∑
i∈I b̂iyi and g (

∑
i∈I ĉiyi) terms, resulting in a worse objective value

(in the minimization sense).
To prove Part 2, suppose to the contrary that (y′1, · · · , y′|I|) is an

optimal solution where 0 < y′k < 1 and 0 < y′l < 1 where k < l. From
Part 1, 1 ≤ k < l ≤ m. Let z’ denote the objective value associated
with this solution. Then, one can define another solution, (y′′1 , · · · , y′′|I|),
as follows:

y′′i =


y′i if i 6= l, k

y′k + ε if i = l

Y ′l −
ĉk
ĉl
ε if i = l

(3.7)

where ε = min
{

1− y′k,
ĉl
ĉk
y′l

}
which implies that (y′′1 , · · · , y′′|I|) is feasible.

Denote the objective value of the new solution by Z ′′. Then,

Z ′′ − Z ′ = ε

(
b̂k − b̂l

ĉk
ĉl

)
+ g

(∑
i∈I

ĉiy
′
i + ĉkε− εĉl

ĉk
ĉl

)
− g

(∑
i∈I

ĉiy
′
i

)

= ε

(
b̂k − b̂l

ĉk
ĉl

)
≤ ε

(
b̂k −

b̂k
ĉk
ĉk

)
= 0. (3.8)

The inequality (3.8) holds because k < l, i.e., b̂k/ĉk ≤ b̂l/ĉl. The
above implies that Y ′′j is optimal. Furthermore, because ε = min{

1− y′k,
ĉl
ĉk
y′l

}
, the following holds.

1. If ε = 1− y′k, y′′k = 1, 0 < y′′l < 1

2. If ε = ĉl
ĉk
y′l, y′′l = 0, 0 < y′′k < 1.
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In both cases, the number of variables with strictly fractional values
is reduced by one without increasing the objective value. Part 2 then
follows from repeating the same argument until only one fractional
value remains in the solution.

Part 3 can be proved by a similar contradiction argument similarly
as Part 2.

Note that Proposition 3.1 holds for any increasing function g(·), not
only the square root form. Ozsen et al. (2008) and Ozsen et al. (2009)
and Mak and Shen (2009) have applied variants of this result to solve
subproblems with other nonlinear functions.

Furthermore, for cases where the function g(·) is increasing and
concave, such as the case for the square root function, the following
result holds:

Corollary 3.1. If the function g(·) is increasing and concave, there exists
an optimal solution to the continuous relaxation of (3.6) at which yi
takes on integer values for all i ∈ I, and the continuous relaxation is
tight.

Proof. This result follows from the fact that the continuous relaxation
of (3.6) is a concave minimization problem over a polyhedron, which
admits an optimal solution at a basic feasible solution. Note that the
polyhedron {y|yi ≥ 0, yi ≤ 1 for i ∈ I} is defined by 2|I| constraints
over |I| variables. Hence, at any basic feasible solution, |I| of the 2|I|
constraints hold at equality. Furthermore, for each i, at most one of
the constraints yi ≥ 0 or yi ≤ 1, but not both, can hold at equality.
Therefore, |I| of the 2|I| constraints holding at equality implies that
one of the two constraints corresponding to each i holds at equality, all
all i ∈ I, i.e., yi takes on integer values for all i ∈ I.

Utilizing the above results, the pricing problem can be solved by
enumerating m solutions, obtained by setting y1 = · · · = yk = 1 and
yk+1, · · · y|I| = 0 for k = 1, · · · ,m:

Algorithm 1. The following algorithm solves the pricing problem (3.4),
when g(·) is increasing and concave.
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• Step 0: Initialize m = 0, k = 1, L∗ = 0, k∗ = 0.

• Step 1: Sort items in set I such that b̂1/ĉ1 ≤ b̂2/ĉ2 ≤ · · · b̂|I|/ĉ|I|.
Set m = sup{i|1 ≤ i ≤ |I|, b̂i < 0}. If m = 0, go to Step 4;
otherwise, go to Step 2.

• Step 2: Compute L(k) =
∑k
i=1 b̂i + g

(∑k
i=1 ĉi

)
. If L(k) < L, set

L∗ = L(k) and k∗ = k.

• Step 3: If k = m, go to step 4; otherwise, increment k → k + 1
and go to Step 2.

• Step 4: Return optimal solution y by setting yi = 1 for i =
1, · · · , k∗ and yi = 0 for i = k∗+1, · · · , |I|, and objective value L∗.

The complexity of the algorithm is O(|I| log |I|), which is the com-
plexity of the step of sorting elements in I in increasing order of b̂/ĉ.
Based on this subroutine to solve the pricing problem, one may then
proceed with the standard branch-and-price algorithm (e.g., Barnhart
et al., 1998) to solve the set covering formulation of the [SCD] problem.
In particular, one performs branch and bound by fixing Xj = 1 or
0 iteratively. At each node of the branch and bound tree, instead of
solving the continuous relaxation of the original problem (as in the
standard branch and bound algorithm), the continuous relaxation of
the master problem (with some Xj ’s fixed) is solved by the column
generation procedure described above.

3.1.2 Lagrangian Relaxation

A popular alternative decomposition method for solving large scale
(linear or nonlinear) integer programming problems is Lagrangian re-
laxation. It is built on the theory of Lagrangian duality and offers,
for problems with certain “block” structures, an effective means for
computing upper and lower bounds on the optimal objective value. The
general idea can be described qualitatively as follows. Suppose there
is a large-scaled constrained optimization problem with a linked-block
structure, i.e., decision variables and constraints can be separable except
for a small number of linking constraints. Without the presence of such
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linking constraints, the problems would be solvable for each block sepa-
rately. Thus, a natural approximation approach is to relax these hard
linking constraints to soft constraints, i.e., impose penalty for violations.
The Lagrangian relaxation algorithm involves iteratively selecting the
value of such penalty parameters (referred to as Lagrangian multipliers
or Lagrangian dual variables associated with the linking constraints),
while taking advantage of separability to solve the relaxed problem. For
a more detailed tutorial on the Langrangian relaxation approach, the
interested reader may refer to Fisher (1985), for example. For the [SCD]
problem, Daskin et al. (2002) propose a Lagrangian relaxation algorithm
that is closely related to the branch-and-price algorithm proposed by
Shen et al. (2003).

The procedure begins by taking the Lagrangian dual of the [SCD]
problem by relaxing constraints (2.5) and imposing corresponding La-
grangian multipliers πi: maxπ L(π), where

L(π) = min
∑
j∈J

∑
j∈J

fjXj +
∑
i∈I

d̂ijYij + K̂j

√∑
i∈I

µiYij


+
∑
i∈I

πi

1−
∑
j∈J

Yij


= min

∑
j∈J

∑
j∈J

fjXj +
∑
i∈I

(d̂ij − πi)Yij + K̂j

√∑
i∈I

µiYij


+
∑
i∈I

πi (3.9)

s.t. Yij −Xj ≤ 0 for i ∈ I, j ∈ J
Xj ∈ {0, 1} for j ∈ J
Yij ∈ {0, 1} for i ∈ I, j ∈ J.

The Lagrangian dual can be interpreted as an approximation of the
original problem obtained by relaxing a set of difficult constraints (2.5),
without which the problem becomes easier to solve (in particular, decom-
posable by j), and replacing them with penalty imposed for violation.
In this particular problem, (2.5) can be viewed as a set of complicating
constraints because the problem exhibits a block structure, i.e., the
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objective coefficients and remaining constraints forming independent
blocks corresponding to each j ∈ J once constraints (2.5) are removed.
Therefore, these constraints are chosen to be relaxed, and the penalty
terms

∑
i∈I πi

[
1−

∑
j∈J Yij

]
are imposed in the objective function. It

can be shown that, for any value of π, the optimal objective value of the
relaxed problem, L(π), is a lower bound on that of the original [SCD]
problem. Therefore, the best (tightest) lower bound can be obtained by
maximizing the Lagrangian function over the penalty coefficients π.

Three difficulties remain in developing an efficient algorithm for
obtaining good solutions based on the Lagrangian dual problem. First,
given any π, an efficient subroutine for solving (3.9) is needed. Second,
the values of π need to be optimized to obtain the tightest lower bound.
Third, because solutions to the Lagrangian dual problem may not
necessarily be feasible in the original problem due to relaxing (2.5), one
needs to construct feasible solutions (upper bound solutions) based on
information from the Lagrangian dual solution. We shall discuss each
of these issues below.

To solve (3.9), one first observes that this problem is separable by
j ∈ J , i.e., can be solved for each j separately, thanks to the relaxation
of complicating constraints. Then, for each j, the subproblem becomes:

min
∑
j∈J

fjXj +
∑
i∈I

(d̂ij − πi)Yij + K̂j

√∑
i∈I

µiYij

 (3.10)

s.t. Yij −Xj ≤ 0 for i ∈ I
Xj ∈ {0, 1}, Yij ∈ {0, 1} for i ∈ I.

To solve (3.10), one may compare the resulting objective values
from fixing Xj = 0 and 1 and solving for the Yij variables optimally.
In the former case, Yij = 0 for all i ∈ I, and the objective value is
0. In the latter case, observe that the subproblem of optimizing Yij is
equivalent to the pricing problem in the column generation procedure,
(3.4). Therefore, one can invoke the results of Proposition 3.1 and
Corollary 3.1 to solve the subproblem using Algorithm 1. If the optimal
objective value of (3.4) is smaller than −fj , then it is optimal to set
Xj = 1 (and Yij equal to the corresponding optimal values in (3.4)) in
(3.10); otherwise, Xj = Yij = 0 for all i ∈ I is the optimal solution.
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Remark 3.2. It is not coincidence that both the column generation and
Lagrangian relaxation procedures give rise to the same subproblem. In
fact, these two methods are known to be equivalent and lead to the
same decomposition reformulation as well as bounds (see, for example,
Vanderbeck and Savelsbergh, 2006).

The next algorithmic issue is to optimize over the values of π. We
take note of the following:

Lemma 3.2. The Lagrangian function, L(π), is concave and piecewise
linear in π.

Proof. For each given solution (X,Y), the objective value (3.9) is linear
in π. With (X,Y) restricted to binary values, there are a finite number of
feasible solutions. Therefore, the value of L(π) is given by the pointwise
minimum of a finite number of linear functions, which yields a piecewise
linear concave function.

Lemma 3.2 implies that the Lagrangian dual is a concave-maximiza-
tion problem. However, the objective function L(π) is nondifferentiable.
For nondifferentiable concave maximization (or convex minimization)
problems, subgradient methods are often effective. These methods are
extensions of gradient methods for differentiable convex minimization
problems, based on the notion of subgradients, the generalization of
gradients for nondifferentiable functions.

Definition 3.1. Let C ⊆ Rn be a convex set and f : C → R be a
concave function. A vector g is a subgradient of f at x ∈ C if, for every
y ∈ C, it satisfies:

f(x) + g′(y− x) ≤ f(y). (3.11)

Geometrically, condition (3.11) states that the tangent line at x
defined by the subgradient lies above the function f(·) over its domain.
It is clear that the subgradient is a generalization of the gradient. In
particular, where f(x) is differentiable at x, then the gradient is the
unique subgradient at x. In general, when f(x) is nondifferentiable, the
subgradient is not unique. The set of all subgradients of f at x is known
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as the subdifferential of f , denoted by ∂f(x). It is easy to check that
the subdifferential of a concave function is a closed, convex set.

Based on the notion of subgradients, one can generalize the steepest
descent (ascent) methods for smooth concave function maximization
to nondifferentiable functions by replacing gradients with subgradients
in identifying descent directions. For theoretical aspects of subgradient
methods, we refer readers to discussions in textbooks such as Bazaraa
et al. (2004) (Chapter 8.9). Here, we provide an application-driven
outline of the procedure for maximizing L(π).

We begin with the following result that identifies a subgradient for
the function L(π).

Lemma 3.3. g = [(1−
∑
j∈J Y

∗
1j), · · · (1−

∑
j∈J Y

∗
|I|j)]

′ is a subgredient
at π for L(π), where (X∗,Y∗) is the solution to the inner problem (3.9)
given π.

Proof. By definition 3.1, we need to show that g satisfies condition
(3.11) for any π̂ ∈ R|I|.

L(π̂) = min
∑
j∈J

∑
j∈J

fjXj +
∑
i∈I

d̂ijYij + K̂j

√∑
i∈I

µiYij


+
∑
i∈I

π̂i

1−
∑
j∈J

Y ∗ij


≤

∑
j∈J

∑
j∈J

fjX∗j +
∑
i∈I

d̂ijY
∗
ij + K̂j

√∑
i∈I

µiY ∗ij


+
∑
i∈I

π̂i

1−
∑
j∈J

Y ∗ij


= L(π) +

∑
i∈I

(π̂i − πi)

1−
∑
j∈J

Y ∗ij

 .
In the above, the inequality holds because (X∗,Y∗) is a feasible, but
not necessarily optimal, solution to the inner problem (3.9) given π̂

With the above result, we present the following subgradient algo-
rithm.
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Algorithm 2. The subgradient algorithm for maximizing L(π) can be
stated as follows:

• Step 0: Initialize π1 as any starting value, e.g., 0, UB = ∞,
LB =∞. Set iteration counter n = 1.

• Step 1: Solve (3.9) with π = πn. Let (Xn,Yn) denote the optimal
solution. If L(πn) > LB, update LB = L(πn).

• Step 2: Construct feasible solution (X̂n, Ŷn) by repairing (Xn,Yn)
such that relaxed constraints (2.5) are satisfied. Compute objective
value, denoted by zn, corresponding to (X̂n, Ŷn). If zn < UB,
update UB = zn and incumbent solution (X̂, Ŷ) = (X̂n, Ŷn). If
(UB − LB)/UB < ε for pre-specified tolerance level ε, go to Step
4. Otherwise, go to Step 3.

• Step 3: Compute subgradient g = [(1 −
∑
j∈J Y

∗
1j), · · · , (1 −∑

j∈J Y
∗
|I|j)]

′. Update πn+1 = πn+δng/||g||2. Increment n→ n+1.
Go to Step 1.

• Step 4: Terminate algorithm and return incumbent solution
(X̂n, Ŷn).

To implement Algorithm 2, a few details remain to be filled in.
First, one need to determine step sizes δn for updating π. Theoretically
(Bazaraa et al., 2004, Theorem 8.9.2), the algorithm is guaranteed
to converge to the global optimal solution for step sizes satisfying
{δn} → 0+ and

∑∞
n=0 δ

n = ∞. However, not all step size sequences
satisfying these two conditions work efficiently. For example, the step
size sequence δn = 1/n is known to lead to slow convergence in practice.

An alternative is to use δn = λn(L∗−L(πn)), where L∗ is the optimal
value L(π∗). However, because this optimal value is not known a priori
in practice, a practical choice is to replace it with some upper bound L̄.
In Step 3, L̄ can be chosen to be UB, the best upper bound identified
so far. Furthermore, {λn} is a decreasing sequence that approaches zero.
An approach that typically works efficiently in practice is to begin with
λ1 = 2 and, if LB has not been updated in Step 1 for a certain number
of iterations (e.g., 20), set λn+1 = λn/2. This procedure allows for
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refining the search region once the algorithm has not identified improved
solutions (in π) for a certain number of iterations. Furthermore, the
termination condition λn < ε̂ for some tolerance ε̂ can be included. In
this algorithm, one point to caution about is that, if UB is too far from
the true optimal value, the algorithm is not guaranteed to converge. In
case of such difficulties, an alternative (albeit more complex) step size
rule that guarantees convergence without requiring knowledge of the
optimal value is the variable target method proposed by Sherali et al.
(2000).

Next, we discuss the issue of how to identify good upper bounds for
updating subgradients and associated feasible solutions to the original
problem. Recall that, at iteration n, the solution (Xn,Yn) to the relaxed
problem may not satisfy constraints (2.5). In particular, it is possible
that for some i ∈ I, either

∑
j∈J Y

n
ij = 0 or ≥ 2. To repair this solution,

we consider each i ∈ I one by one, and compute the incremental cost
(based on the assignments so far) of assigning i to each DC that is open
in the current solution (i.e., Xn

j = 1). The assignment with the lowest
incremental cost is chosen. Note that this greedy procedure does not
necessarily identify the optimal assignment given the set of DCs to be
opened. Therefore, one can also consider improvements via exchange
heuristics. See Daskin et al. (2002) for details.

Another subroutine that helps improve efficiency of the algorithm is
variable fixing. In Step 1, let vnj denote the optimal value in subproblem
(3.4) for the current iteration.

Proposition 3.2. The following variable fixing rules hold:

• (Node exclusion rule:) If Xn
j = 0 and LB + fj + vnj > UB, then

Xj = 0 at the optimal solution and this can be imposed as a
constraint in subsequent iterations;

• (Node inclusion rule:) If Xn
j = 1 and LB − (fj + vnj ) > UB, then

Xj = 1 at the optimal solution and this can be imposed as a
constraint in subsequent iterations.

Proof. We first prove the node exclusion rule. If Xj = 1 at the optimal
solution, the constraint Xj = 1 can be added to the original problem
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without affecting the optimal objective value, i.e., UB remains a valid
upper bound. However, with this additional constraint, the resulting
lower bound at iteration n would become LB + fj + vnj instead of LB
(because DC j must be selected due to the additional constraint), which
contradicts the validity of UB as an upper bound. Therefore, Xj must
equal 0 at the optimal solution.

The node inclusion rule can be proved similarly.

Finally, we note that strong duality does not generally hold for the
Lagrangian dual. Therefore, the best upper and lower bounds (UB and
LB) obtained from Algorithm 2 need not be equal. To close the gap,
one may embed the algorithm in a branch and bound procedure (Daskin
et al., 2002).

It is notable that the efficacy of decomposition approaches depends
heavily upon the mathematical structure of the optimization formu-
lations. Thus, ideally, the modeler should keep in mind the potential
implications on solution efficiency when formulating the mathematical
model from the outset. This is also true for other solution approaches
as well, including the conic programming method that we shall review
in the next section.

3.2 Conic Programming

Conic programming is an important branch of convex optimization. A
wide array of problems with applications in operations research as well
as various engineering disciplines can be modeled with special classes
of conic programs, such as second-order cone programs (SOCPs) (see,
e.g., Boyd and Vandenberghe, 2009). SOCPs are a generalization of
convex quadratic programs and linear programs (LPs) and can be very
efficiently solved with interior point algorithms. In this section, we use
the [SCD] problem as an illustration of how SOCP techniques can
help develop efficient solution approaches for integrated facility location
models.
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We first define SOCP problems as follows (e.g., Lobo et al., 1998).

Definition 3.2. An SOCP is an optimization problem in the form:

min fTx
s.t. ‖Aix + bi‖ ≤ cTi x + di for i = 1, · · · , N,

where x ∈ Rn denotes the vector of decision variables, f ∈ Rn,Ai ∈
R(ni−1)×n,bi ∈ Rni−1, ci ∈ Rn, di ∈ R, and ‖ · ‖ denotes the Euclidean
norm.

Consider formulation (2.4), in which the objective contains nonlinear
(square root) terms, while all constraints are linear. We shall show that
this nonlinear formulation can be reexpressed with SOCP constraints.
First, note that one can replace the objective with:

min
∑
j∈J

[
fjXj +

∑
i∈I

d̂ijYij +KjUj + qVj

]
, (3.12)

and add the following constraints:√∑
i∈I

µiYij ≤ Uj for j ∈ J (3.13)

√∑
i∈I

σ2
i Yij ≤ Vj for j ∈ J. (3.14)

Next, we recall that Yij is constrained to take binary values. This
implies that, in any feasible solution, Yij = Y 2

ij . Therefore, constraints
(3.13, 3.14) are equivalent to:√∑

i∈I
µiY 2

ij ≤ Uj for j ∈ J (3.15)

√∑
i∈I

σ2
i Y

2
ij ≤ Vj for j ∈ J. (3.16)

Note that, because µi > 0 and σ2
i ≥ 0, the left hand side terms in

(3.15, 3.16) are Euclidean norms, and therefore these constraints are
in SOCP form. Then, adding constraints (2.5-2.8), we obtain a mixed
integer second-order cone program (MISOCP). This class of problems
can be solved optimally with branch and bound routines, in which
continuous relaxations solved with interior point algorithms. Practical
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implementations of such routines are available in commercial solver
packages such as CPLEX.

Atamtürk et al. (2012) use a similar transformation to formulate
a supply chain design model with disruption risk considerations as a
MISOCP. To speed up computations, they adopt a class of extended
polymatroid inequalities that are valid for constraints in the form (3.15,
3.16) in a branch-and-cut procedure. Extended polymatroid inequalities
are closely related with the concepts of submodular functions and
extended polymatroids. We begin the discussion with the following
definitions.

Definition 3.3. A set function g : 2I → R is submodular if, for all
S1, S1 ⊆ I, g(S1 ∪ S2) + g(S1 ∩ S2) ≤ g(S1) + g(S2).
A set EPg ∈ RI is an extended polymatroid associated with g, for a
submodular function g, if EPg = {x ∈ RI |

∑
i∈I xi ≤ g(S) for all S ⊆

I}.

Atamtürk and Narayanan (2008) prove the following proposition
regarding a class of valid inequalities associated with extended polyma-
troids.

Proposition 3.3. [Proposition 1 of Atamtürk and Narayanan (2008)]
For the lower convex envelope of a submodular function g, given
by conv{(y, t) ∈ {0, 1}I × R, g(y) ≤ t}, an inequality in the form∑
i∈I πiyi ≤ t if and only if π ∈ EPg.

These inequalities are known as extended polymatroid inequali-
ties. We then discuss how this result can be applied to the case of
constraints (3.15). The case for (3.16) is analogous. First, we define
g(Yj) =

√∑
i∈I µiY

2
ij . It can be shown that g(·) is a submodular func-

tion. Then, Proposition 3.3 suggests that the extended polymatroid
inequalities

∑
i∈I πiyi ≤ t for π ∈ EPg are valid for the lower convex

envelope of g(·), and thus for the MISOCP formulation of the [SCD]
problem. However, as the set EPg is itself a polyhedron, it is impossible
to enumerate all possible π values. Therefore, these inequalities are
added to the formulation iteratively with a cut generation procedure. In
particular, in each iteration of the branch-and-bound procedure where
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a continuous relaxation of the MISOCP formulation is solved, one can
identify a violated extended polymatroid inequality, or prove that no
such inequality is violated, by solving a separation problem as stated
below (Atamtürk et al., 2012).

Proposition 3.4. For given (Y∗j , U∗), let ζ∗ and π∗ be the optimal objec-
tive value and solution to the separation problem maxπ∈EPg

∑
i∈I πiY

∗
ij ,

respectively. If ζ∗ > U∗, then the extended polymatroid inequality∑
i∈I π

∗
i Yij ≤ U cuts off (Y∗j , U∗); otherwise, all extended polymatroid

inequalities are satisfied at (Y∗j , U∗).

Note that the separation problem is equivalent to maximizing a
linear function over an extended polymatroid. This can be efficiently
solved with the greedy algorithm (Edmonds, 1970). Details of this
implementation can be found in Appendix B of Atamtürk et al. (2012).

Both the decomposition methods and conic programming methods
discussed in Sections 3.1 and 3.2 aim at providing computationally
efficient routines to obtain numerical solutions to problem instances.
The technique to be discussed in the next section, on the other hand,
provides an important tool for simplifying and obtaining tractable
approximations to analytical models.

3.3 Dimensional Analysis

To complement the techniques presented in the previous sections for
solving computational facility location models, we further discuss a
powerful technique for analyzing continuous approximation models
(discussed in Section 2.3), known as dimensional analysis. This technique
is often employed in the development and selection of models in physical
sciences and statistics. In particular, when developing possible models
of relationships between physical quantities (variables and parameters),
dimensional analysis helps eliminate models (relationships) that would
be violated when variables and parameters are re-scaled.
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3.3.1 π-Theorem and EOQ Example

The core idea of dimensional analysis is that physically meaningful
relationships must be invariant to rescaling of parameter dimensions.
For example, if a certain physical relationship holds regarding the density
of DCs and the distribution cost of the supply chain network, then the
same relationship should remain to hold if one redefines distance in
kilometers instead of in miles. This idea is formalized in Buckingham’s
celebrated π-Theorem (e.g., Bridgman, 1922):

Theorem 3.4. Consider a problem that can be described in (dependent
and independent) variables q1, · · · , qn, where a dimensionally homo-
geneous relationship in the form f(q1, · · · , qn) ≡ 0 holds. Then, the
equation can be restated as F (π1, · · · , πp), where πk, k = 1, · · · , p are
dimensionless parameters in the form πk = qa1k

1 qa2k
2 · · · qankn .

The π-Theorem formalizes the rescaling idea, i.e., any physically
meaningful relationship between parameters of arbitrary dimensions can
be reexpressed as one between dimensionless parameters constructed
from the original parameters that is invariant under scaling. For more
discussion of the π-Theorem (in the context of fluid mechanics), one
may refer to Sonin (2001). The key to applying this theorem is how to
identify the dimensionless parameters, also known as π-groups. To this
end, consider a problem with n parameters defined over k dimensions.
As an illustration, we consider the economic ordering quantity (EOQ)
model, in which we want to identify the relationship between four
parameters: the demand rate D (in items/time or items1 × time−1),
holding cost rate h (in dollars1× item−1× time−1), fixed replenishment
cost K (in dollars1) and the optimal (replenishment and holding) cost
rate C (in dollars1 × time−1). These four parameters are defined over
three dimensions: items, time and dollars. Therefore, in this example,
n = 4 and k = 3. It is well known that, when the replenishment cycles
are optimized, we have C =

√
2KDh. What we shall show below is

that, without going through the analysis of inventory dynamics or even
defining the objective function of the EOQ problem, we can already
derive the structure of this relationship through dimensional analysis.
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To summarize the relationships between parameters with their re-
spective dimensions, we consider the k by n matrix M, referred to as the
dimensional matrix, whose rows correspond to dimensions and columns
correspond to parameters. Its (i, j)-th component is the power of the
i-th dimension in the j-th parameter. For example, in the EOQ case,
we have

M =

 1 −1 0 0
−1 −1 0 −1
0 1 1 1

 .
Consider the first column, which corresponds to the demand rate pa-
rameter. Because demand rate has dimensions of items1 × time−1, the
entry in the first row (corresponding to items) is 1, the entry in the
second row (time) is -1, and the entry in the third row (dollars) is
0. Similarly, the second column corresponding to holding cost rate,
which has dimensions dollars1 × item−1 × time−1, has entries of -1 in
the first and second rows (items and time) and 1 in the third (dollars).
For the third column, which corresponds to the replenishment cost K
(in dollars1), only the third row entry (dollars) is 1 and others are 0.
Finally, the fourth column, which corresponds to the optimal cost rate
C (dollars1 × time−1), has entries of 0 for the first row (items), -1 for
the second row (time) and 1 for the third (dollars).

The significance of the dimensional matrix is that the π-groups can
be identified by solving the equation

M


a1
...
an

 = 0. (3.17)

That is, they correspond to vectors in the null space of M. This is
because, by definition, π-groups are dimensionless and have no units. In
order to construct such a group, the original problem parameters should
be multiplied in a way that their units cancel out. For the EOQ example,
suppose vector [a1, a2, a3, a4]T satisfies (3.17). By the construction of
the matrix M, (3.17) implies that the parameter group Da1ha2Ka3Ca4

is dimensionless (i.e., has dimensions dollars0 × item0 × time0), that
is, their units cancel out each other. Thus, the dimensionless π-groups
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can be obtained by solving the equation (3.17). From the rank-nullity
theorem, the following holds:

Theorem 3.5. The number of multiplicatively-independent π-groups is
given by n− rank(M).

For the EOQ example, rank(M) = 3, and thus there can be only one
independent π-group, corresponding to (a1, a2, a3, a4) = (−1,−1,−1, 2).
Therefore, π-group is given by π1 = D−1h−1K−1C2 = C2/(KDh).
Then, by the π-theorem, the relationship between the four parameters
must hold in the form of f(C2/(KDh)) ≡ 0, i.e., C2/(KDh) ≡ γ or
C ≡

√
γKDh for some (dimensionless) constant γ. This is consistent

with the classical result of the EOQ model that C ≡
√

2KDh under
the optimal solution. Furthermore, recall that we did not make use of
any knowledge of the EOQ problem itself or any relationships between
the parameters, beyond their units. In fact, the analysis does not even
rely on the definition of C being the cost rate under the optimal replen-
ishment policy (or any definition of the objective function). Hence, any
replenishment policy that depends only on the other three parameters
would yield an average cost rate in the same form, with possibly different
values of γ.

One can also perform a similar analysis to uncover the relationship
between the three input parameters D,h,K and the optimal order
quantity Q (in items). Replacing C with Q, we update the fourth
column of the M matrix to obtain:

M =

 1 −1 0 1
−1 −1 0 0
0 1 1 0

 .
Again, rank(M) = 3 and there is only one independent π-group, which
corresponds to (a1, a2, a3, a4) = (−1, 1,−1, 2). Hence, π1 = hQ2/(KD).
Then, the π-theorem implies that hQ2/(KD) ≡ γ and Q =

√
γKD/h

for some constant γ. Again, without considering the explicit cost struc-
ture of the EOQ model, we are able to identify the relationship between
the optimal order quantity and the other input parameters. This re-
lationship is again consistent with the optimal solution of the EOQ
model, in which γ = 2. Furthermore, as is the case for the optimal cost
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rate C, this dimensional analysis does not make use of the assumption
that Q is the optimal replenishment quantity. Therefore, any consistent
ordering policy that depends only on D,h and K would yield (average)
order quantities proportional to

√
KD/h.

The EOQ example discussed above illustrates the potential power of
dimensional analysis. For concisely defined problems with small number
of parameters, the number of π-groups to consider is small, following
Theorem 3.5. Then, it is possible to identify relationships between input
parameters and parameters of interest (such as order quantity and
cost rate in the EOQ example) that greatly enhance tractability of the
problem. In Section 3.3.2, we discuss how this idea can be utilized to
model routing costs for inventory replenishments at DCs.

3.3.2 Example: Retail Store Density Model

In this section, we illustrate the technique of dimensional analysis using
a retail network design model adopted from Cachon (2014). In this
work, the author studies the interactions between carbon emissions of
transportation and the density of retail stores. In particular, operating
the retail network incurs two types of travel and their associated carbon
emissions: customers’ travel between home and store, and truck travel
to replenish the stores’ inventories. The underlying trade-off of interest
is one of choosing to operate a dense network of stores, which reduces
customer travel at the expense of additional truck travel, versus a sparse
network, which saves on truck travel while increasing customer travel
distances. To capture this trade-off, Cachon (2014) proposes a centralized
model that determines the optimal store density that minimizes the sum
of the two travel costs, in addition to the facility cost. Based on this
model, he investigates the impact of various emission-curbing measures
on the optimal trade-off.

Consider a region of area a in which n stores are located with a
fixed density (e.g., located at grid points). Customers are uniformly
spaced within the region and the population size is normalized to
one. Let dc(n) and dt(n) be the aggregate customer and truck travel
distances, and cc and ct be the associated unit costs (which includes
fuel costs and possibly carbon taxes), respectively. Furthermore, let
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ts(n) be the store space required and cs be the facility cost per unit
store space. Then, the problem of optimizing the density (or, for a fixed
area, the number) of stores can be formulated as minn Z(n), where
Z(n) = csts(n) + ccdc(n) + ctdt(n).

We assume that aggregate customer demand per unit area in the
region follows a normal distribution with mean λ and variance σ2.
For tractability, Cachon (2014) proposes an approximation for ts(n) by
assuming that inventory is controlled using a carefully selected base stock
policy such that stock-outs (backorders) are rare and replenishments
typically utilize a full truck (approximately). In particular, under such
assumptions, the expected inventory level at a facility at the end of a
period is approximately given by zσ̂, where z is a safety stock factor
and σ̂ is the standard deviation of demand handled by each facility,
that is, the expected inventory level is approximately equal to the safety
stock level. This is because the expected replenishment quantity is
approximately equal to the expected demand per replenishment cycle.
Because a facility covers a/n units of area, σ̂ =

√
a/nσ. Therefore, for

n facilities, the total store space required is φs
√
an, where φs = zσ.

For the transportation cost terms, Cachon (2014) shows that there
exists constants φc and φt such that the following hold, by using geo-
metrical derivations:

dc(n) = φc

√
a/n (3.18)

dt(n) = φt
√
an. (3.19)

We illustrate alternative derivations of the same results using dimen-
sional analysis. We first focus on dc(n), the aggregate customer travel
distance. With n stores located, to minimize customer travel distance,
it is obvious that each customer will patronize the respective nearest
store. Effectively, the region will be partitioned into n subregions, each
covering the customer locations from which a store is the closest out
of all n options. Such a partitioning scheme is known as a Voronoi
diagram, which can be efficiently computed given the geometry of the
region. However, to obtain tractable expressions for the travel distance,
we further make the assumptions that the region is of a regular shape
and is large enough. These assumptions imply that the subregions will
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be regular polygons (e.g., squares, triangles, hexagons), each of size a/n,
centered on the stores. Then, dc(n) is given by the average distance
from any point in a regular polygon (customer location) to its center
(the store).

We follow the steps for dimensional analysis illustrated in Section
3.3.1. Let â = a/n, the area of the regular polygon in question. The
relationship between the area of the polygon and the average distance
can be described in the dimension of miles, and two parameters, â and
dc(n), with dimensions of miles2 and miles, respectively. Therefore, one
can consider the dimensional matrix M = [2 1]. As rank(M) = 1, we
can form only one independent dimensionless group, i.e., â/(dc(n))2.
Then, the π-Theorem implies that there exists constant γ such that
â/(dc(n))2 ≡ γ, or dc(n) ≡

√
â/γ. Substituting â = a/n and defining

φc = 1/√γ, we obtain (3.18).
Next, we consider the truck travel distances. Cachon (2014) assumes

that the stores are replenished by a single truck that visits the n stores
in one tour, and thus considers dt to be the optimal length of a traveling
salesman tour. We note that, for the case where dt is given by the
optimal travel distance under a vehicle routing problem (i.e., trucks
have limited capacity and cannot visit all n stores in one tour), one can
utilize the results of, for example, Daganzo (1984) to obtain a similar
formula as (3.19). We will discuss how to obtain an approximate formula
for the optimal traveling salesman tour based on dimensional analysis
(Daganzo, 2005).

We first assume that the region in question is square-shaped (which
can be relaxed). The traveling salesman problem can be characterized
by one dimension, miles, and three parameters: a (in miles2), n (dimen-
sionless) and L∗ (in miles), defined as the optimal traveling salesman
tour connecting the n stores. The dimensional matrix can be written as
M = [2 0 1]T . The rank of the matrix is one, and thus we obtain two
π-groups: n and dt/

√
a. Theorem 3.4 then stipulates that L∗/

√
a ≡ f(n),

or equivalently, dt ≡
√
af(n), with some function f(·) to be identified.

The combinatorial nature of the traveling salesman problem makes
the identification of f(·) challenging. Interestingly, for the asymptotic
case where n is very large, one can obtain structural results that yield
a tractable formulation.
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Proposition 3.5. For any positive and even integer m, f(n) ≤ 4m +
mf(n/m2).

Proof. For any given instance of store locations, one can form a feasible
(but suboptimal) traveling salesman tour for the entire region by the
following heuristic: (1) for some even integer m ≥ 2, partition the
original square-shaped region evenly into m × m square subregions;
(2) solve for the optimal traveling saleman tour for points within each
subregion; and (3) join the subtours obtained in each subregion to form
one single tour that visits all stores. Note that step (3) can be done as
follows. First, form pairs of adjacent subregions. Then, for each pair of
adjacent subregions, remove one link each from the two subtours and
add two links to join the corresponding stores such that the subtours are
joined. Note that, as m is an even number, one can form a sequence of
adjacent pairs such that repeating this procedure will yield one complete
tour.

Because the region is spatially homogeneous, each of the subregions,
with area a/m2, have an average number of stores of n/m2. There-
fore, the expected length of each subtour in Step (2) will be given by√
a
m f

(
n
m2

)
. Further, the expected extra distance incurred by each extra

link added in Step (3), which is bounded above by the distance between
two randomly chosen points in two adjacent subregions, cannot exceed
two times the length of each subregion, i.e., 2

√
a/m. Note also that

2m2 such links are added in total. Thus, combining Steps (1-3), the
above heuristic yields a feasible tour with expected length not exceed-
ing 4m

√
a+m

√
af
(
n
m2

)
. Since this provides an upper bound on the

optimal length dt/
√
a ≡ f(n), we may obtain the desired result by

rearranging terms.

Proposition 3.5 shows that f(·) is bounded above by mf(n/m2) plus
a term in O(m). Using a similar argument, one can also obtain a lower
bound in the form of mf(n/m2) minus a term in O(m). Asymptotically,
as N goes to infinity, the O(m) terms are dominated, and we observe
that

lim
n→∞

f(n)
mf(n/m2) = 1.
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Because this holds true for all m, f(n) = O(
√
n). One can then use the

approximation f(n) ≈ k
√
n, or equivalently, dt = k

√
an, for sufficiently

large n, where k is a constant that depends on the metric. Daganzo
(2005) further discusses that the same argument holds for regions of
non-square shapes, by partitioning the (possibly) irregular region into
(approximately) square subregions, and shows that the constant k does
not depend on the shape of the region. Using this approximation, we
can then approximate the truck travel distance by φt

√
an in (3.19) by

letting φt = k.
Combining the cost terms, the overall cost function is given by

C(n) = φccc
√
an+ (φtct + φscs)

√
an, and the optimal density of stores

(i.e., stores per unit area) to operate is given by

n∗/a = φccc
φtct + φscs

.

Cachon (2014) considers that the cost parameters ct, cc and cs to consist
of both operating cost and emission cost components. Then, using this
model, he investigates the effect of different compositions of the two
types of costs on the optimal store density. For example, if emission costs
are very high (e.g., due to a high carbon tax), intuition would suggest
the operation of a denser network of stores, because trucks are more
fuel-efficient than cars, and increasing store density causes substitution
of car travel with additional truck travel. However, the model shows
that this is not always the case, because such substitution is not a linear
effect. In particular, one mile of truck travel displaces a smaller and a
smaller car travel distance as store density increases, as customer (home-
to-store straight line) travel distances decrease faster than truck travel
(traveling salesman) distances as store density increases. Furthermore,
Cachon (2014) calibrates the model to parameter inputs based on actual
operating costs and emission values of vehicle models in the market
and identify several key insights. In particular, attempting to optimize
supply chain designs based on cost metrics solely without incorporating
emission considerations may substantially increase emissions (compared
with the minimum-emissions scenario). Furthermore, carbon tax and
improvements in truck fuel efficiency are less effective measures in
reducing overall emissions than the improvement in fuel efficiency of
cars.
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3.4 Discussion

For many facility location models, particularly ones in the form of
mixed integer nonlinear programs, decomposition methods help exploit
special structures (e.g., concave or submodular objective functions) by
breaking down the problem into smaller pieces, which helps circumvent
confounding factors such as linking constraints. The efficiency of such
approaches is very problem specific, i.e., they work exceptionally well
for certain problems but not for some others. In contrast, for the class of
problems that can be formulated in the conic form, conic programming
approaches make use of general purpose solvers that work for any
problem in the class. As general-purpose solution algorithms for conic
programs continue to advance, the computational efficiency of the
conic approach will further improve. Thus, as a rough rule of thumb,
where there are alternative formulations (approximations) for the same
problem, ones in the conic form are often preferable. On the other
hand, decomposition methods could be effective for other problems that
possess special structures (e.g., general concave increasing objective
functions) that cannot be captured in the conic form.

Dimensional analysis, while fairly commonly employed in certain
engineering disciplines, is relatively little known within the operations
management community from our observation. For compactly formu-
lated analytical models, this technique allows one to greatly focus the
class of functional forms to consider. We believe that this technique is
not only effective in developing analytical continuous approximation
models, but also promising in capturing operational characteristics for
computational models (in the formulation of nonlinear objective terms
or constraints) as well.



4
Applications in Supply Chain Settings

In Chapters 2 and 3, we have outlined a number of popular modeling
and solution techniques employed in the study of integrated facility
location problems in the literature. In this chapter and the next, we
further discuss examples of applications of these techniques in different
problem contexts. A rich literature covers applications in the supply
chain domain, in which problems of designing networks of warehouses
and DCs are tackled. It is notable that, while the business planning con-
text is common, the models developed to account for different problem
characteristics, such as risk, capacity and multiple-commodity consider-
ations, can be substantially different. As problem complexity grows with
the richness of features incorporated in the model, the modeler should
carefully select the most imperative features to the specific application
while maintaining problem tractability.

4.1 Capacitated Distribution Center Location for Traditional Sup-
ply Chains

The supply chain network design model [SCD] discussed in Chapter 2
is applibe maidcable in various distribution network planning settings.
However, the model is uncapacitated, i.e., it does not take into account

61
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the potential limitations in terms of physical space or material handling
volume of candidate facility locations. Often, although a hard capacity
constraint is not present, locating a facility that handles larger demand
volume would entail higher investment costs (e.g., due to additional
equipment). Modeling-wise, varying investment requirements associated
with different capacity levels can be reflected by defining multiple entities
in the candidate location set J corresponding to the same physical site,
each having a different capacity limit and a different fixed location cost
fj .

Recall that the [SCD] model is an extension of the classical [UFL]
model. In Section 1, we discussed that the conventional approach to
incorporate facility capacity is to consider the capacitated extension
[CFL] by adding constraint (1.6). Note that this constraint imposes a
limit on the total demand volume that can be assigned to a facility,
and thus reflects capacity at a strategic planning perspective, i.e.,
that customers must be re-assigned to other facilities whenever the
capacity limit is to be exceeded. Under the integrated modeling approach,
one can consider an additional, more flexible treatment of capacity
considerations at the tactical level by adjusting the inventory control
policy. In particular, when the capacity constraint arises from physical
space limit, one can attempt to accommodate demand from more
demand sources by operating under smaller replenishment lot sizes to
reduce peak inventory levels, instead of opening additional facilities.
This possibility is studied by Ozsen et al. (2008) and Ozsen et al. (2009).
We discuss this modeling extension in this section below.

4.1.1 Tactical Modeling of Facility Capacity

Our discussion builds on the same notation defined in Chapter 2 for
the discussion of the [SCD] model. Recall that, in the [SCD] model,
DCs are considered to replenish inventory under continuous review
(r,Q) policies. In the classical (r,Q) model, the reorder point r is given
by the sum of the safety stock and the expected demand during lead
time. Furthermore, note that the maximum possible inventory level
carried by the DC is reached in the scenario that no demand is realized
during the lead time (see Figure 4.1), i.e., the maximum level is given by
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Figure 4.1: Maximum Inventory Level under Continuous Review (r,Q) Policy

r+Q. Therefore, for a facility j ordering a lot size Qj per replenishment
cycle subject to a storage space capacity of Cj , one can formulate the
following capacity constraint:

Qj +
∑
i∈I

LµiYij + zα

√∑
i∈I

Lσ2
i Yij ≤ Cj , (4.1)

where, as defined in Section 2.1, L denotes the replenishment lead time,
µi and σi denote the mean and standard deviation of demand at location
i, and Yij is the binary decision variable indicating whether demand at
customer location i is served by the facility at location j.

In (4.1), the second and third terms on the left hand side are
the expected lead time demand and safety stock levels, respectively.
Adding this constraint (for all j ∈ J) to [SCD] may entail additional
computational complexity, as it involves nonlinear terms. Furthermore,
as Qj has to be chosen subject to the capacity constraint, it is no
longer possible to directly employ the EOQ approximation as is done
in the original [SCD] model. In particular, the cycle stock holding
and inbound replenishment costs in (2.4) (the third term) must be
formulated explicitly as:
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Gj(Qj , Dj) = Fj
Dj

Qj
+ β

(
gj
Dj

Qj
+ ajDj

)
+ θ

hQj
2 , (4.2)

where Dj =
∑
i∈I µiYij . Incorporating the new cycle stock expression,

one can formulate the capacitated supply chain design problem as:

[CSCD] : min
∑
j∈J

fjXj +
∑
i∈I

d̂ijYij +Gj

(
Qj ,

∑
i∈I

µiYij

)
+ q

√∑
i∈I

σ2
i Yij


(4.3)

s.t. (2.5-2.8) and (4.1). Atamtürk et al. (2012) observe that, under a
single sourcing arrangement where Yij ∈ {0, 1}, one can transform both
the nonlinear objective and capacity constraints into SOCP form, and
the resulting [CSCD] problem can be written as an MISOCP. However,
for cases with multiple sourcing or for larger-sized instances, one may
adopt the Lagrangian relaxation decomposition procedure proposed by
Ozsen et al. (2008) and Ozsen et al. (2009), as we discuss below.

4.1.2 Lagrangian Relaxation for Capacitated Problem

In this section, we shall illustrate the Lagrangian relaxation procedure
for the case of multiple sourcing (Ozsen et al., 2009). In particular, in
the presence of capacity limits, one can possibly split the demand at a
retailer among multiple DCs to allow for more flexible demand assign-
ments. Modeling-wise, multiple sourcing can be captured by relaxing the
integrality constraints in (2.8) to interval constraints 0 ≤ Yij ≤ 1, for
i ∈ I, j ∈ J . The Yij values can then be interpreted as the probability
that an order from i is allocated to DC j, following some randomized
order allocation procedure.

We next discuss how the [CSCD] problem with multiple sourcing
can be solved with Lagrangian relaxation. The single sourcing variant of
the problem can also be solved by using a similar procedure. To simplify
the notation, we first define

Wj(Dj) =
{

min
Qj>0

Gj(Qj , Dj), s.t. (4.1)
}
.

Following the Lagrangian relaxation procedure discussed in Section
3.1.2 for the [SCD] problem, we may relax constraints (2.5) and assign
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Lagrangian multipliers πi. Then, given the values of πi, we face the
following subproblem for each j ∈ J :

min fjXj +
∑
i∈I

(d̂ij − πi)Yij +Wj

(∑
i∈I

µiYij

)
(4.4)

s.t. Yij −Xj ≤ 0 for i ∈ I
Xj ∈ {0, 1}, 0 ≤ Yij ≤ 1 for i ∈ I.

If Xj = 0, the objective value is 0. If Xj = 1, the problem reduces to:

min
0≤Yij≤1

∑
i∈I

(d̂ij − πi)Yij +Wj

(∑
i∈I

µiYij

)
. (4.5)

Letting b̂i = d̂ij − πi and ĉ = µi (the subscipts j are suppressed
for brevity), we obtain a problem that is equivalent to the continuous
relaxation of problem (3.6) considered in Section 3.1.1, but with the
function g(·) (the square root function) replaced with Wj(·). Recall
that the key result, Proposition 3.1, applies for all increasing function
g(·), and thus holds for problem (4.5) as well. Proposition 3.1 suggests
that at the optimal solution to (4.5), the subset Yij variables taking
strictly positive values can be identified through a sorting procedure,
according to the b̂i/ĉi ratio. Furthermore, there is at most one i where
0 < Yij < 1.

However, unlike the case for the subproblem of [SCD], the nonlinear
function g(·) is now non-concave. Therefore, it is possible for Yij to
take a value strictly between 0 and 1 for some i. Ozsen et al. (2008)
provide the following result to identify possible fractional solutions in
such scenarios, by analyzing the Karush-Kuhn-Tucker (KKT) necessary
conditions for optimality of problem (4.5).

Proposition 4.1. [Theorem 2 of Ozsen et al. (2008)] Assume that Y∗ is
an optimal solution to (4.5). If Y ∗kj takes on a strictly fractional value,
then the following holds for retailer k:

b̂k + µk
∂

∂
∑
i∈I µiY

∗
ij

Wj

(∑
i∈I

µiY
∗
ij

)
= 0. (4.6)

Combining Propositions 3.1 and 4.1, Ozsen et al. (2008) propose
the following algorithm.
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Algorithm 3. The algorithm for solving problem (4.5) can be stated as
follows:

• Step 0: Let I+ = {i ∈ I|b̂i ≥ 0} and I− = I \ I+. Let Yij = 0 for
all i ∈ I+.

• Step 1: Sort retailers in set I− such that b̂1/ĉ1 ≤ b̂2/ĉ2 ≤ b̂m/ĉm,
where m = |I−|.

• Step 2: For k = 1, · · · ,m, let Dj,k =
∑k
i=1 µi (Dj,0 = 0). Define

∆jk = {D̂j,k ∈ R|b̂k +µk
∂Wj(D̂j,k)
∂D̂j,k

= 0, Dj,k−1 < D̂j,k < Dj,k}, i.e.,
∆jk corresponds to the set of solutions to (4.6).

– If ∆jk is empty, let Sj,k =
∑k
i=1 b̂i + Wj(Dj,k). This corre-

sponds to the objective value of the candidate solution of
setting Yij = 1 for i = 1, · · · , k.

– If ∆jk is non-empty, let Ŝj,k = mind∈∆jk

{∑k−1
i=1 b̂i + b̂k

(D̂j,k −Dj,k−1)/µk +Wj(D̂j,k)
}
and D∗j,k be the correspond-

ing D̂j,k value; and let Sj,k = min
{
Ŝj,k,

∑k
i=1 b̂i +Wj(Dj,k)

}
.

This corresponds to the objective value of the candidate
solution of setting Yij = 1 for i = 1, · · · , k, or Yij = 1 for
i = 1, · · · , k−1 and Ykj to its best fractional value, whichever
is better.

• Step 3: Let k∗ = argmink=1,··· ,mSj,k. Then, the optimal solution
is given by:

Yij =


1, for i < k∗

(D∗j,i −Dj,i−1)/µi for i = k∗

0, for i > k∗ or i ∈ I+.

(4.7)

Embedding Algorithm 3 in the subgradient procedure (Algorithm
2), one can solve the [CSCD] problem efficiently. Ozsen et al. (2008) and
Ozsen et al. (2009) discuss effective heuristics to construct upper bound
(i.e., feasible) solutions based on solutions to the subproblem, for both
the single sourcing and multiple sourcing versions of the problem. Note
that subproblem (4.5) yields lower bounds for both variants, because
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it relaxes the integrality constraints on the Yij variables in the single
sourcing formulation. To obtain stronger lower bounds, it is also possible
to perform a branch and bound procedure for the subproblem with
integrality constraints, which involves using Algorithm 3 as a subroutine
to solve its continuous relaxation.

Using this solution procedure, Ozsen et al. (2008) and Ozsen et al.
(2009) find that high-quality solutions to the [CSCD] problem can be
obtained efficiently. Furthermore, comparing between the two cases,
they find that multiple sourcing can lead to significant cost savings
because of the extra flexibility to allocate demand. They also find that
it is typically the case that only a small number of retailers will be
multi-sourced in the optimal solution. These findings provide design
guidelines for supply chain planning scenarios in practice.

The capacitated network design model discussed in this section
considers strategic capacity planning in light of future uncertainty in
demand. The examples to be discussed in the next section further
incorporates the consideration of risk more explicitly in the formulation
of network design models.

4.2 Supply Chain Design under Uncertainty

Network design constitutes a key decision in strategic supply chain
planning. Due to the capital intensive investments in facilities such as
DCs, these decisions are costly, or impossible, to reverse. Especially
when entering new markets or introducing new products, planners must
pay extra attention into uncertainties in future demand, costs and
other parameters. For classical facility location problems, Snyder (2006)
provides an excellent review of modeling techniques for incorporating
planning uncertainty, and the associated solution methodologies. In
recent years, there has been a growing stream of work on incorporating
planning uncertainty in integrated supply chain design models. In this
section, we discuss some of the modeling concepts.

As discussed in Section 2.2, one popular approach for modeling
optimization problems under uncertainty is to employ stochastic pro-
gramming formulations. The scenario-based modeling approach, with
its statistical foundation and managerial significance, has been often
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employed to guide supply chain planning decisions. In this section, we
formulate and discuss scenario-based extensions to the [SCD] model
with different objectives that correspond to different risk preferences of
the decision maker.

4.2.1 Risk Neutral Objective

The first cut approach to model optimal decisions under random envi-
ronments is often to consider the average outcome, i.e., the expected
value of the objective function. This corresponds to the risk neutral
decision criterion, under which the decision maker is indifferent between
a risky (random) outcome and a deterministic outcome as long as the
expected value of the former is equal to the latter. This is often an
appropriate decision criterion when the future payoff consists of many
independent realizations of the random parameters over a long period
of time, such that the cumulative average performance converges to the
expected value. For example, in supply chain settings where demand
for products are uncertain, the risk neutral objective is appropriate if
the network has a long planned life cycle and the demand rates realized
in each future period of operation are forecasted to follow a stationary
probability distribution.

Snyder et al. (2007) consider a stochastic version of the [SCD]
problem in which there are two decision phases. In the first phase,
DC locations are chosen out of the candidate set J . At this stage,
planning parameters, such as demand rates and shipping costs, are
uncertain. We define a set S of mutually-exclusive and exhaustive
scenarios of future outcomes regarding these operating parameters. The
values of the demand and shipping cost parameters (µi and d̂ij in the
[SCD] objective function (2.9)) under scenario s (∈ S) are denoted
by µis and d̂ijs, respectively. We also assume that scenario s occurs
with known probability ps (where

∑
s∈S ps = 1). The strategic facility

location decisions (indicated by decision variables Xj) are made prior
to observing the scenario realizations.

Then, after the DC locations are fixed, the problem proceeds to
its second stage where one of the scenarios in S is realized and the
decision maker needs to determine the tactical decisions of supply
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chain operations. In particular, the assignment of retailer demand to
DCs, indicated by decision variables Yijs, are determined conditional
on scenario s being realized. These decisions determine the inventory-
and transportation-related costs of the supply chain network. Then, the
stochastic supply chain design problem can be formulated as follows.

[S-SCD] : min
∑
j∈J

[
fjXj +

∑
s∈S

ps

(∑
i∈I

d̂ijsYijs

+K̂j

√∑
i∈I

µisYijs

 (4.8)

s.t.
∑
j∈J

Yijs = 1 for i ∈ I, s ∈ S (4.9)

Yijs −Xj ≤ 0 for i ∈ I, j ∈ J, s ∈ S
Xj ∈ {0, 1} for j ∈ J
Yijs ∈ {0, 1} for i ∈ I, j ∈ J, s ∈ S.

Note that the objective (4.8) is to minimize expected costs under
the distribution of future scenarios. To solve this problem, Snyder et
al. (2007) propose a similar Lagrangian relaxation algorithm as the
one discussed in Section 3.1.2. In particular, if one relaxes (4.8) by
imposing Lagrangian multipliers πis for each i ∈ I and s ∈ S, the
problem can be decomposed by both i and s. This gives rise to |I| × |S|
subproblems in the form of (3.10), which can be solved using the sorting
procedure. Following this approach, Snyder et al. (2007) find that the
scenario-based [S-SCD] problem can be solved efficiently.

4.2.2 Risk Averse Objective

While the [S-SCD] model is conceptually intuitive and computationally
efficient to solve, it assumes risk neutrality, i.e., that the decision maker
is indifferent between risky and risk-free outcomes, as long as the
expected costs are the same. Conceptually, in a stochastic optimization
problem, we make first-stage or “here-and-now” decisions (X) when key
parameters (denoted by θ) are not yet revealed and are known to follow
some distribution F . Then, as the values of θ are revealed, we obtain an
outcome (e.g., cost) of L(X,θ), possibly given by the optimal objective
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value of some recourse optimization problem (e.g., by optimizing the
Yijs variables in [S-SCD]). The risk neutral [S-SCD] model optimizes
the facility location decisions by considering the mean of the outcome,
i.e., EF [L(X,θ)]. As such, the decision maker disregards the possible
dispersion (or risk) of the random variable L(X,θ). In practice, however,
managers are often risk averse, and prefer outcomes with smaller degrees
of risk. Conceptually, this corresponds to a future cost distribution that
has lower variability, even at the expense of a larger expectation.

The appropriate choice of a risk-aware objective, however, is not
trivial. The concept of risk measures is often useful. A risk measure is
defined to be a deterministic, i.e., risk-free, quantity (payoff or cost)
that the decision maker is willing to trade the risky position (the
random outcome L(X,θ)) for. Various risk measures, their properties
and applicability in various decision contexts are broadly studied in
disciplines such as decision analysis, economics and finance (e.g., Artzner
et al., 1999). In the following, we discuss some popular risk measures
(objectives) often employed in location analysis and how they can be
incorporated in integrated supply chain design formulations.

To guard against adverse outcomes, the minimax objective is often
employed in robust optimization (e.g., Serra and Marianov, 1998, for
the P -median problem). This objective optimizes the worst-case (i.e.,
largest) realized cost out of all possible outcomes. That is, it considers
supθ L(X,θ). Applying this to the [SCD] problem, one can replace
objective function (4.8) in the [S-SCD] model by the following, which
selects the largest (worst) cost out of all scenarios in S:

min
∑
j∈J

fjXk +W

s.t. W ≥
∑
i∈I

d̂ijsYijs + K̂j

√∑
i∈I

µisYijs for s ∈ S.

Overall, the major advantage of the minimax approach is that the
absolute worst case is optimized. Then, under all scenarios, the cost is
bounded above by the tightest possible bound. This approach caters to
decision makers who are pessimistic and want to plan for the absolute
worst case. However, being too pessimistic is also the major problem of
the minimax approach. Optimizing the worst outcome tends to generate
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a solution in which the performance is uniform over all scenarios. The
average case performance may be sacrificed in order to avoid the worst
case scenario that may be extremely unlikely to occur. Therefore, the
key problem with the minimax objective is that it weighs all possible
scenarios equally. This is the most conservative approach taken, when
there is not enough available data to define meaningful probability
distributions on the outcome. However, even in the absence of detailed
probabilistic information, the firm would always prefer to perform
better under certain scenarios considered as important and be willing
to sacrifice the performance under other less important ones. In fact,
optimizing the weighted performance across scenarios is equivalent to
assuming a probability measure on the defined scenarios and optimizing
an expected utility function.

Several different approaches have been taken to avoid focusing on
the absolute worst case. For example, the α-reliable framework defines
a subset of scenarios, called the α-reliable set, and minimizes the worst
cost or regret within this set. The α-reliable set is defined endogenously
such that the total probability that the stochastic cost falls below the
objective value considered is at least α, a level specified by the user.
Using our previous notation, this objective corresponds to the measure

vα(X) = inf v, s.t. P (L(X,θ) ≤ v) ≥ α.

A reason for doing this is that the worst possible case has a low proba-
bility of occurring (less than 1− α) and we do not want such a highly
unlikely event to alter the decision by too much. An example is that
an airport is never designed for the absolute peak demand (e.g., the
Sunday following Thanksgiving) because the cost of doing so is too high
and such high capacity is rarely ever needed. Note that the α-reliable
objective is equivalent to the α-quantile, i.e., the Value at Risk (VaR).

Daskin et al. (1997) formulate a new version of the P -median problem
minimizing the maximum regret within the α-reliable set and evaluate
the trade-off between having a higher value of α (probability that the
regret will not exceed the optimal objective value) and having lower
maximum regret. Applied to the [SCD] problem, one can formulate the
α-reliable objective by replacing objective function (4.8) in the [S-SCD]
model with the following:
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min
∑
j∈J

fjXk +W

s.t. W ≥
∑
i∈I

d̂ijsYijs + K̂j

√∑
i∈I

µisYijs

−M(1− Zs) for s ∈ S (4.10)∑
s∈S

psZs ≥ α (4.11)

Zs ∈ {0, 1} for s ∈ S. (4.12)

In the above,M is defined to be a constant larger than the maximum
(second-stage) cost under any scenario s ∈ S. Binary decision variables
Zs are defined to indicate whether scenario s is included in the α-
reliable set or not. Constraints (4.10) ensure that the value of W
corresponds to the second-stage cost under the worst scenario included
in the α-reliable set, and constraint (4.11) makes sure that the aggregate
probability of scenarios included in the set exceeds α. Note that this
new objective relies on the big-M formulation, which is known to be
computationally inefficient in practice, due to their resulting in weak
continuous relaxations in branch-and-bound. Generally, VaR objectives
are known to be less tractable to optimize, because they do not preserve
convexity, i.e., for L(X,θ) convex in X, vα(X) is not convex in X
in general. Another shortcoming of this risk measure is that it does
not consider anything beyond the α-quantile and therefore does not
distinguish between a long tail and a short tail.

To address these limitations, one can consider a risk measure known
as conditional value at risk (CVaR). The α-CVaR is the conditional
expectation of costs above the α-VaR (Rockafellar and Uryasev, 2000,
2002), defined as the expected excess costs associated with outcomes
outside the α-reliable set. Mathematically, the α-CVaR is defined as:

vα(X) + 1
1− α

∫
max{L(X,θ)− vα(X)}dF(θ).

CVaR is known to be a coherent risk measure, i.e., it satisfies the
axioms of monotonicity, translational invariance, subadditivity and
positive homogeneity (for details, refer to, e.g., Artzner et al., 1999).
CVaR is particularly amenable to optimization, as it preserves convexity.
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Furthermore, it can be computed in the following tractable form:

inf
v,X

v + 1
1− αEF [L(X,θ)− vα(X)]+. (4.13)

Applying this objective, Chen et al. (2006) formulate the α-reliable
mean excess regret version of the P -median model and compare it with
the Daskin et al. (1997) model. With the CVaR objective, we know that
with probability of at least α, the outcome will be less than the optimal
objective value, and with probability 1− α, the conditional expectation
of the outcome is equal to the optimal objective value. They show that
the CVaR model is much easier to solve than the α-reliable model when
the problem contains a large number of scenarios.

In the [SCD] context, the CVaR objective can be formulated by
replacing objective function (4.8) in the [S-SCD] model by the following:

min v + 1
1− α

∑
s∈S

psUs (4.14)

s.t. Us ≥
∑
i∈I

d̂ijsYijs + K̂j

√∑
i∈I

µisYijs − v for s ∈ S (4.15)

Us ≥ 0 for s ∈ S. (4.16)

The above formulation follows directly from (4.13) and does not
introduce any additional binary variables to the problem. Overall, the
CVaR concept provides an attractive modeling option that provides the
versatility to capture different degrees of risk aversion with computa-
tionally tractable formulations.

The models discussed in this section are formulated based on a
scenario-based approach. In the next section, we shall discuss that such
ideas for formulations, when interpreted appropriately, can also be used
to model supply chain networks that distribute multiple commodity
types.

4.3 Multiple-Commodity Supply Chain Design

The supply chain design models that we have discussed thus far consider
the tactical and operational aspects of managing one single commodity.
This modeling approach serves as a reasonable approximation where
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products processed by the facilities are similar in characteristics, such
that they can be modeled collectively as a generic product following
the aggregate planning principle (e.g., Nahmias and Cheng, 2009).
In modern supply chains, however, product proliferation has caused
product lines to lengthen significantly. For example, retailers such as
WalMart and Amazon handle millions of products. Using Amazon as an
example, its network of fulfillment centers carry inventory for a myriad
of stock keeping units (SKUs). While many of these are fast moving
products sold at high volumes, there are a large number of SKUs falling
in the long tail with low sales volumes. It is a sensible strategy to control
inventory for these products in different ways. In particular, for fast
moving SKUs, Amazon can afford to stock them closer to the markets,
by carrying them at all fulfillment centers. However, for low moving
SKUs that are individually infrequently ordered, a more centralized
stocking strategy, which maximizes risk pooling, is a sensible choice.

Incorporating these differentiated supply chain strategies for multiple
product classes necessitates careful network design modeling. In this
section, we discuss two models for this purpose. First, we propose an
extension to the [SCD] model designed to handle a general number
of commodities. Second, we review a recently proposed model that
captures a small number (two) of product classes that exhibit different
characteristics with respect to scale economies.

4.3.1 Multiple Commodities in [SCD] Model

We first consider a multiple-commodity extension of the [SCD] model,
proposed by Shen (2005). Let S denote a set of commodities. For the
demand and shipping cost parameters in (2.9), we append the subscript
s corresponding to each commodity s ∈ S. We consider that a facility,
once opened (indicated by decision variables Xj for j ∈ J), can be used
to handle one or multiple commodities. We use decision variables Yijs
to indicate whether demand for commodity s at retailer i is served by
DC j (= 1) or not (= 0).

Then, the multiple-commodity supply chain design model can be
formulated as follows
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[M-SCD] : min
∑
j∈J

fjXj +
∑
s∈S

∑
i∈I

d̂ijsYijs + K̂j

√∑
i∈I

µisYijs


s.t.

∑
j∈J

Yijs = 1 for i ∈ I, s ∈ S

Yijs −Xj ≤ 0 for i ∈ I, j ∈ J, s ∈ S
Xj ∈ {0, 1} for j ∈ J
Yijs ∈ {0, 1} for i ∈ I, j ∈ J, s ∈ S.

Note that the [M-SCD] formulation is structurally equivalent to
the [S-SCD] problem discussed in Section 4.2.1, in that commodities in
the former corresponds to scenarios in the latter. In both models, the
objective is to minimize the (weighted) sum of costs realized over the set
of commodities or scenarios. Because the two models are structurally
identical, the Lagrangian relaxation solution approach developed for
[S-SCD] will also work efficiently for [M-SCD].

4.3.2 Multiple Commodities with Different Scale Economies

The [M-SCD] model, while general enough to handle an arbitrary num-
ber of commodity types, assumes that economies of scale is exhibited
in carrying inventory for each commodity (as a result of inbound trans-
portation consolidation and safety stock risk pooling). In practice,
however, it is noted that both economies and diseconomies of scale
can often be exhibited at different levels of throughput at facilities (Lu
et al., 2014). In particular, at high throughput levels, congestion occurs
and the marginal cost of handling additional demand volume tends to
increase. Therefore, the inventory cost function for a facility, instead of
being a concave (square root) function, can be “inverse S-shaped,” i.e.,
consists of a concave region at low demand volumes, and then a convex
region at higher volumes. Lu et al. (2014) propose a supply chain design
model with a single commodity, where operating costs at facilities can
be reflected with inverse S-shaped cost functions, and an associated
column generation solution algorithm.

In a multiple-commodity setting, different scale economies charac-
teristics of different commodities pose additional planning difficulties.
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To address this, Shu et al. (2014) propose a model that addresses the
supply chain design problem with multiple commodities with different
scale economies characteristics. We discuss this model for the special
case of two commodities by using the same notation as defined before:

min
∑
j∈J

[
fjXj +

∑
i∈I

d̂ij1Yij +
∑
i∈I

d̂ij2Yij

+gj1

(∑
i∈I

µi1Yij

)
+ +gj2

(∑
i∈I

µi2Yij

)]
(4.17)

s.t.
∑
j∈J

Yij = 1 for i ∈ I

Yij −Xj ≤ 0 for i ∈ I, j ∈ J
Xj ∈ {0, 1} for j ∈ J
Yij ∈ {0, 1} for i ∈ I, j ∈ J.

In the objective function (4.17), the functions gj1(·) and gj2(·) are
operational cost functions for the two commodities being handled at
facility j, and are allowed to take any increasing, concave-convex (i.e.,
nonlinear) shape. Shu et al. (2014) consider that demand for all com-
modities at the same retailer to be assigned to the same DC, i.e., Yij
(instead of Yijs for s = 1, 2). In practice, such a constraint may help
control operational complexity and possibly reduce shipping costs by
shipment consolidation of demand for the two commodities. They pro-
pose a column generation method to solve the problem. Following the
standard column generation procedure discussed in Section 3.1.1, one
needs to solve the following pricing subproblem for each j ∈ J , similar
to (3.6) (again, suppressing subscripts j):

min
y∈{0,1}|I|

∑
i∈I

b̂iyi + g1(
∑
i∈I

µi1yi) + g2(
∑
i∈I

µi2yi) (4.18)

where b̂i = d̂ij − πi, ĉi1 = µi1 and ĉi2 = µi2.
Recall that, for (3.6) in which the objective function contains only

one nonlinear term, Proposition 3.1 suggests that the optimal solution
to the continuous relaxation can be obtained by first ranking the set
I by the b̂i/ĉi ratio, and that at most one yi can take on a fractional
value. However, in (4.18), the same result does not hold when there
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are two nonlinear terms g1(·) and g2(·). Shu et al. (2014) show that,
interestingly, the following result holds:

Proposition 4.2. Given any increasing functions g1(·) and g2(·), for
any optimal solution to the continuous relaxation of (4.18), denoted by
(y∗1, · · · , y∗|I|), there exist α, β such that:

1. α ĉi1
b̂i

+ β ĉi2
b̂i
≤ 1 for any i where y∗i = 1;

2. α ĉi1
b̂i

+ β ĉi2
b̂i

= 1 for any i where y∗i ∈ (0, 1);

3. α ĉi1
b̂i

+ β ĉi2
b̂i
≥ 1 for any i where y∗i = 0.

Furthermore, there exist at most two elements i such that y∗i ∈ (0, 1).

To see the connection between Propositions 4.2 and 3.1 (which holds
where the objective function does not include g2(·)), consider the case
where ĉi2 ≡ 0, i.e., g2(·) is a constant. In this case, Proposition 4.2
suggests that the optimal solution can be obtained by first sorting the
set I in increasing order of the ĉi1

b̂i
ratio; and subsequently partitioning

the sorted set into three subsets, where yi is set to 1, some fractional
value, and 0, respectively. This result is consistent with Proposition 3.1.

The proof of Proposition 4.2 is quite involved and can be found in
Shu et al. (2014). Based on this proposition, Shu et al. (2014) further
propose a geometric argument that solves the continuous relaxation of
(4.18) in polynomial time. In particular, one first maps the elements in
I to points ( ĉi1

b̂i
, ĉi2
b̂i

) on a two-dimensional plane. Then, conditions 1-3
in Proposition 4.2 refer to partitioning the plane into two half-planes
with the line αx+ βy = 1 for some α, β. All O(|I|2) possible partitions
can be enumerated considering that there are either zero, one or two
elements in I where y∗i take on fractional values (i.e., the mapped
points lie exactly on the line by condition 2). For each partition, the
possible fractional values of y∗i can be obtained via solving for the KKT
conditions of the problem while fixing all other variables to 0 or 1 as
appropriate. Using this procedure, the continuous relaxation of (4.18)
can be solved efficiently. This can be embedded as a subroutine of
the column generation algorithm (possibly with branch and bound to
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enforce integrality for the pricing problem) to solve the original problem
(4.17).

The discussion of multiple-commodity models, particularly in Section
4.3.1, illustrates how scenario-based models could be used for modeling
different product types, in addition to modeling uncertainty. However,
such models also come with potential limitations. The next section
discusses a problem in which scenarios are a less effective approach to
modeling disruption-related uncertainties in supply chain operations,
and other formulation techniques are better suited for the purpose.

4.4 Supply Chain Design with Disruption Considerations

Driven by catastrophic events including September 11 and Hurricane
Katrina, much research interest has been drawn on devising strategies
that mitigate the risks of disruptions in supply chains. The presence
of disruption risks are known to substantially alter the desirability
of supply chain strategies. A case in point is the impact of the 2011
Japanese earthquake and tsunami on Toyota’s supply chain. With all
its accolades for its just-in-time strategy under normal circumstances,
Toyota finds that its lean supply network structure (e.g., its rule of
sourcing from only two suppliers for critical parts) leaves it with little
excess capacity to quickly revamp production after the disruption and
thus hampers recoverability (Wall Street Journal, 2011b). Researchers
have cautioned that disruption risks are fundamentally different than
demand uncertainty (Snyder and Shen, 2006) and production yield un-
certainty (Chopra et al., 2007), despite the fact that all three exacerbate
the demand-supply mismatch, and must be safeguarded against using
different strategies. Tomlin (2006, 2009) discusses the use of different
mitigation and contingency strategies to protect the supply chain against
disruptions. Excellent reviews of operations management research on
the topic of supply chain disruptions can be found in Vakharia and
Yenipazarli (2009) and Snyder et al. (2015).

Research on strategic facility location under the threat of disrup-
tions has emerged in the literature over the past decade. Due to the
all-or-nothing (i.e., a facility is either running or disrupted) nature of
disruptions, planning uncertainty has to be modeled differently than for
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other types of recurrent uncertainty, which often can be characterized
using scenario planning (as discussed in Section 4.2.1). Particularly,
because each facility can either be disrupted or not, the number of
disruption scenarios can be up to 2|J | for |J | candidate facility locations
under consideration, leading to computationally intractable formula-
tions. To circumvent this difficulty, researchers make use of special
problem structures to formulate tractable models. Snyder and Daskin
(2005) propose a formulation for the P -Median problem when facilities
are subject to independent disruptions with equal probabilities, together
with an efficient Lagrangian relaxation solution algorithm. Shen et al.
(2011) consider the UFL variant of the model and propose heuristics and
approximation algorithms. Lim et al. (2010) and Lim et al. (2013) study
an extension in which facility location and fortification decisions are
made jointly, and propose integer programming and continuous approxi-
mation models for the problem, respectively. Cui et al. (2010) generalize
the model of Snyder and Daskin (2005) to allow unequal disruption
probabilities and devise an efficient branch-and-bound algorithm for its
Lagrangian relaxation subproblem based on a supermodular property.
Li and Ouyang (2010) use a continuous approximation approach to
study the effect of spatially-correlated disruptions under a similar UFL
setting. Note that these papers consider direct extensions of the UFL
and P -median models and do not consider inventory costs.

There have been several works that incorporate inventory cost con-
siderations in supply chain design under the threat of disruptions. The
common assumption in this literature is that disruptions lead to com-
plete shutdowns of facilities. This all-or-nothing capacity uncertainty
motivates Qi et al. (2010) study a supply chain design problem in which
supply disruptions may occur at either the supplier or the facilities
(where inventory is held). Mak and Shen (2012) consider a stochastic
optimization model for designing a supply chain network with dynamic
sourcing, an arrangement common for online retailers (to be discussed
in Section 4.5). Under the threat of disruptions, the dynamic sourcing
arrangement enables both risk pooling (inventory sharing among fa-
cilities) and risk diversification (limiting disruption losses by placing
smaller quantities of inventory over more facilities). Chen et al. (2011)
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consider an extension of the [SCD] model in which retailer demand is
to be reassigned to other facilities if the primary one is disrupted. As
the former two studies have been covered in previous reviews (Mak and
Shen, 2011), we will focus on reviewing the latter paper in this section.

4.4.1 Model with Backup Assignments

The main idea behind the model formulation of Chen et al. (2011) is
the concept of multiple-level backup assignments in response to facility
disruptions. In particular, a retailer can be assigned to one facility each
at R (≤ |J |) different levels. The level-r facility will serve the retailer’s
demand if the all facilities assigned at levels 1, · · · , r − 1 are disrupted;
i.e., the level-one facility is the primary service facility and the level-r
facility serves as the (r− 1)-st backup. This notion of multi-level facility
assignments was initially proposed by Snyder and Daskin (2005) for the
reliable P -Median problem.

Suppose any facility j ∈ J can be disrupted independently and
with equal probability q. Let binary decision variable Yijr = 1 if facility
j serves retailer i at level r, and 0 otherwise. Then, if Yijr = 1, j
serves demand at i with a probability of qr−1(1 − q), which is the
probability that the level-1, · · · , r − 1 facilities are all disrupted while j
is working. As a result, the expected demand rate at facility j is given
by
∑
i∈I
∑R
j=1 µi(1− q)qr−1Yijr.

Chen et al. (2011) consider demand to be deterministic, and con-
sider an EOQ-type cost structure. In particular, the fixed and variable
replenishment costs at DC j are given by gj and āj , respectively, and
the holding cost rate is h. The ordering quantity is Qj is to be deter-
mined. The annual inventory and inbound logistics costs at DC j can
be expressed as:

Cj(Qj) =
gj
∑
i∈I
∑R
j=1 µi(1− q)qr−1Yijr

Qj
+ hQj

2

+āj
∑
i∈I

R∑
j=1

µi(1− q)qr−1Yijr.
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Optimizing over Qj , we obtain the optimal costs as:

Cj(Q∗j ) =

√√√√2gjh
∑
i∈I

R∑
j=1

µi(1− q)qr−1Yijr

+āj
∑
i∈I

R∑
j=1

µi(1− q)qr−1Yijr.

Then, Chen et al. (2011) formulate the reliable joint inventory-
location problem [RJIL] as follows:

[RJIL] : min
∑
j∈J

fjXj +
∑
i∈I

R∑
j=1

dijµi(1− q)qr−1Yijr + Cj(Q∗j )


+π

∑
i∈I

µiq
R

=
∑
j∈J

fjXj +
∑
i∈I

R∑
j=1

βijrYijr +

√√√√∑
i∈I

R∑
j=1

αijrYijr


+π

∑
i∈I

µiq
R (4.19)

s.t.
∑
j∈J

Yijr = 1 for i ∈ I, r = 1, · · · , R (4.20)

R∑
r=1

Yijr ≤ Xj for i ∈ I, j ∈ J, r = 1, · · · , R (4.21)

Xj , Yijr ∈ {0, 1} for i ∈ I, j ∈ J, r = 1, · · · , R

where αijr = (dij + āj)µi(1− q)qr−1, βijr = 2gjhµi(1− q)qr−1.
In the above formulation, the four terms in the objective function

(4.19) include the fixed location costs of DCs, outbound transportation
costs, inventory and inbound transportation costs, and penalty costs for
not meeting demand, i.e., when all R assigned facilities have failed and
demand cannot be met (incurring a penality of π per unit of demand).
The constraints (4.20) and (4.21) stipulate that each retailer is assigned
to one facility at each of the R levels, and that said facilities are opened,
respectively.
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4.4.2 Solution Approach

The formulation of [RJIL] consists of a nonlinear objective function (with
square root terms), linear constraints, and binary decision variables.
Invoking the fact that Yijr = Y 2

ijr, it is possible to express the square
root terms in the objective function with additional variables and SOCP
constraints. It is then possible to solve the problem directly using integer
conic programming solvers. Alternatively, one can utilize Lagrangian
relaxation methods, which is the route taken by Chen et al. (2011). We
briefly review their approach below.

Obtaining a Lower Bound

Similar to the case with solving the [SCD] problem, the Lagrangian
relaxation algorithm for [RJIL] proceeds with relaxing constraints (4.20)
and imposing Lagrangian multipliers πi. Then, the resulting problem is
decomposable by j ∈ J :

min
X,Y∈{0,1}

fjXj +
∑
i∈I

R∑
j=1

(βijr − πi)Yijr +

√√√√∑
i∈I

R∑
j=1

αijrYijr (4.22)

s.t. (4.21).

To solve the above subproblem, one can compare the cases of setting
Xj = 0 or Xj = 1. In the former case, the resulting objective is zero. In
the latter, one needs to further solve the following problem to determine
the values of Yijr:

min
Y∈{0,1}

∑
i∈I

R∑
j=1

γijrYijr +

√√√√∑
i∈I

R∑
j=1

αijrYijr (4.23)

s.t.
R+1∑
r=1

Yijr = 1 for i ∈ I, (4.24)

where γijr = βijr − πi. Note that, a slack variable Yij(R+1) is added to
express constraint (4.24) in equality form.

Subproblem (4.23) has an objective function that is structurally
similar to (3.4). However, the same solution algorithm cannot be directly
adapted due to the additional constraints (4.24) stipulating that the
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facility can be assigned to each i at most one of the R levels (the case
of no assignment is indicated by assigning to the dummy R + 1-st
level). For this subproblem, Chen et al. (2011) devise a polynomial-time
algorithm based on the interval partition argument to be outlined below.
For ease of exposition, we drop the subscript j in the remainder of this
section as we focus on solving subproblem (4.23) for a given j ∈ J .

First, assume that (αir, γir) 6= (αir′ , γir′) for r 6= r′ (without loss
of generality, because otherwise, we can consider either r or r′ and
remove the other, without affecting the optimal objective value) and let
R = {1, · · · , R+ 1}. Under (4.24), one of Yir is to be set to one for each
i. Suppose the values of Ykr have been fixed for k ∈ I \ {i} and let wi =∑
k∈I\{i}

∑R
r=1 αkrYkr. Then, the marginal contribution to the objective

value by setting Yir = 1 is given by Mir(wi) =
√
wi + αir −

√
wi + γir.

For fixed wi, the optimal r∗ where Yir∗ = 1 is given by: ρi(wi) = {r ∈
R|Mir′(wi) ≥Mir(wi), ∀r′ ∈ R}. Graphically, this can be obtained by
plotting Mir(wi) against wi for all r, and selecting the r corresponding
to the lowest curve at each point wi. Instead of enumerating over R to
identify the lowest curve, note that one only needs to consider only a
reduced set, as explained below. Note that the set ρi(wi) will contain
multiple elements if the lowest curves intersect at wi. Note also that
ρi(wi) is a subset of Ni = {r ∈ R|Mir(0) < Mir′(0) or γir < γir′ ,∀r′ ∈
R \ {r}}, and it is sufficient to consider only elements in Ni rather than
the full set R. This is because, for the curve associated with r to be the
lowest, it holds for every r′ ∈ R \ {r} that either Mir(w) ≤Mir′(w) for
all w ≥ 0, or the curves Mir(w) and Mir′(w) cross at some ŵ > 0. In
the latter case, by continuity of Mir(·) and Mir′(·), the two curves cross
only if (i) Mir(0) < Mir′(0) and Mir(∞) = γir > Mir′(∞) = γir′ , or (ii)
Mir(0) > Mir′(0) and Mir(∞) = γir < Mir′(∞) = γir′ . For r, r′ ∈ Ni,
Mir(wi) and Mir′(wi) intersect at

w̄irr′ = (αir − αir′)2

4(γir − γir′)2 + (γir − γir′)2

4 − αir + αir′

2 > 0.

Let |Ni| = n. If n > 1, then one can sort the elements in Ni into an
ordered sequence r(i, 1), r(i, 2), · · · , r(i, n), such that γi,r(i,k) > γi,r(i,k+1)
for 1 ≤ k ≤ n− 1. Note that, because (γir − γir′)(Mir(0)−Mir′(0)) < 0
for any r, r′ ∈ Ni, this ordering implies Mi,r(i,k) < Mi,r(i,k+1) and
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αi,r(i,k) < αi,r(i,k+1). Then, we define the following breakpoints of wi
values that help characterize the optimal r to select:

wi−1 = 0, wi+n =∞
wi−k = max

k′=1,··· ,k−1
w̄ir(i,k),r(i,k′) for 2 ≤ k ≤ n

wi+k = min
k′=k+1,··· ,n

w̄ir(i,k),r(i,k′) for 1 ≤ k ≤ n− 1.

Recall that w̄irr′ indicates the wi value at which the functions Mir(wi)
and Mir′(wi) intersect. Therefore, wi−k and wi+k indicate the highest
and lowest points along the wi axis at which Mir(i,k)(wi) intersects with
Mir′(wi) for r′ among those ranked (in increasing ordering of Mir(0))
below and above r(i, k), respectively. Note that the intervals [wi−k , w

i+
k ],

k = 1, · · · , n for a non-overlapping partition of [0,∞). This partition
helps identify the optimal r for different values of wi.

Proposition 4.3. [Proposition 2 in Chen et al. (2011)] For all i ∈ I and
wi ≥ 0, ρi(wi) = {r(i, k)|wi ∈ [wi−k , w

i+
k ]}.

Proof. First, we show that wi ∈ [wi−k , w
i+
k ] implies that Mir(i,k) ≤

Mir(i,k′) for all k′ ≤ k. For k′ > k, it holds that wi ≤ wi+k = minl=k+1,··· ,n
w̄ir(i,k),r(i,l) ≤ w̄ir(i,k),r(i,k′). As k

′ > k, Mi,r(i,k)(w) < Mi,r(i,k′)(w) at
w = 0, and the two (continuous) functions intersect once at w̄ir(i,k),r(i,k′).
Therefore, Mi,r(i,k)(wi) ≥Mi,r(i,k′)(wi). Using a similar argument, one
can also show that the same holds for k′ < k.

Next, to prove the converse claim, we need to show that wi 6∈
[wi−k , w

i+
k ] implies that Mir(i,k) > Mir(i,k′) for some k′ 6= k. Consider

some k′ < k and note again that wi ≤ wi+k′ = minl=k′+1,··· ,n w̄
i
r(i,k′),r(i,l) ≤

w̄ir(i,k′),r(i,k). Because wi 6∈ [wi−k , w
i+
k ], the above inequalities cannot both

hold at equality, and therefore wi < w̄ir(i,k′),r(i,k). Since Mi,r(i,k)(0) >
Mi,r(i,k′)(0) and the two functions intersect once only at w̄ir(i,k′),r(i,k),
the above imply that Mi,r(i,k′)(wi) < Mi,r(i,k)(wi). One can follow a
similar argument for k′ > k to complete the proof.

Proposition 4.3 suggests that it is optimal to set Yi,r(i,k) = 1 if
and only if wi ∈ [wi−k , w

i+
k ]. This condition is further equivalent to

w =
∑
i∈I
∑R+1
r=1 αirYir ∈ [ŵi−k , ŵ

i+
k ], where ŵi−k = wi−k + αi,r(i,k) and
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ŵi−k = wi+k + αi,r(i,k). Note that because αi,r(i,k) is increasing in k and
wi+k ≤ w

i−
k+1, the intervals [ŵi−k , ŵ

i+
k ], k = 1, · · · , n, are mutually disjoint

but their union is a strict subset of [0,∞). Let ωi = ∪nk=1{[ŵ
i−
k , ŵ

i+
k ]}.

To optimize the subproblem (4.23), we need to identify the value
of w =

∑
i∈I
∑R+1
r=1 αirYir where Yir = 1 if and only if w ∈ [ŵi−k , ŵ

i+
k ]

concurrently for all i ∈ I. That is, an optimal solution correspond
to a w value that satisfies w ∈ ∩i∈Iωi. Note that by definition of ωi,
∩i∈Iωi is a union of a polynomial number of disjoint intervals. By
enumerating these intervals and constructing the solution (i.e., the Yir
values) accordingly, one can evaluate all such candidate solutions to
find the one with minimum cost. This can be done using the following
algorithm.

Algorithm 4. The following algorithm solves (4.23):

• Step 1: For each i ∈ I, compute the non-dominated subset Ni of
{1, · · · , R+ 1}, and the values of ŵi−k , ŵ

i+
k for all k = 1, · · · , |Ni|.

• Step 2: Sort pairs W = {ŵi−k , 0}i∈I,k=1,··· ,|Ni|∪{ŵ
i+
k , 1}i∈I,k=1,··· ,|Ni|

into {(s1, c1), (s2, c2), · · · , (s|W|, c|W|)} such that s1 ≤ s2 ≤ · · · ≤
s|W|. Initialize k = 1 and the incumbent objective value V = 0.
Initialize incumbent solution Y by letting Yir = 0 for r = 1, · · · , R
and Yi,R+1 = 1 for all i ∈ I.

• Step 3a: Repeat incrementing l by 1 until cl = 0 and cl+1 = 1. If
l = |W|, return solution Y and objective value 0; Otherwise, go
to Step 3b.

• Step 3b: For each i ∈ I, identify k(i) ∈ {1, · · · , |Ni|} that satisfies
[sl, sl+1) ⊆ [ŵi−k(i), ŵ

i+
k(i)]. If k(i) exists for all i, set Ŷi,r(i,k(i)) = 1

and Ŷi,r′ = 0 for r 6= r(i, k(i)) and go to Step 3c; otherwise, go to
Step 3a.

• Step 3c: Compute w =
∑
i∈I
∑R+1
r=1 αirŶir. If w ∈ [sl, sl+1), then

evaluate the objective V̂ associated with solution Ŷ. If V̂ < V ,
set V = V̂ and Y = Ŷ. Go to Step 3a.

In Algorithm 4, Step 2 identifies all intersections of [ŵi−k , ŵ
i−
k ] for

all pairs of i and k, and sorts them in increasing order. Then, Step 3b
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checks if each of these intersections indeed intersects [ŵi−k , ŵ
i−
k ] for some

k in all other i ∈ I. If it does, it is a candidate solution and its objective
value is evaluated in Step 3c. After all candidate solutions are evaluated,
the best one (i.e., with the lowest objective value) is returned.

After solving (4.23) for j, let Vj denote the corresponding objective
value. To solve (4.22), it is optimal to set Xj = 1 and Y according
to the solution identified in Algorithm 4 if Vj + fj < 0; and Xj = 0
otherwise. Collectively for all j ∈ J , this procedure identifies a lower
bound for the [RJIL] problem.

4.4.3 Obtaining an Upper bound

The solution constructed in the lower bound procedure may violate
constraints (4.20). In particular, it is possible that (i)

∑
j∈J Yijr > 0

(i.e., a retailer is assigned to multiple DCs at the same level) or (ii)∑
j∈J Yijr = 0 (i.e., a retailer is not assigned to any DC at some level),

for some r and i. To obtain a feasible solution (which generates an
upper bound on the optimal objective value), Chen et al. (2011) propose
two heuristic procedures to repair the lower bound solution to ensure
feasibility.

The first heuristic checks across all i and r for the two types of
infeasibility scenarios. In particular, it loops through all i ∈ I and
r = 1, · · · , R, and whenever type (i) infeasibility is detected, the solution
is modified by keeping only one facility among those assigned that
minimizes costs, assuming all other assignments remain unchanged (i.e.,
in a greedy manner). After repeating the same for all i and r, any open
DC that is not assigned to any retailer is closed. Then, the procedure
loops through all i and r again to identify type (ii) scenarios. Whenever
such a case is found, it compares the costs of assigning said retailer i to
each open facility at level r assuming all other assignments are fixed,
and completes the assignment with the lowest cost.

The second heuristic only utilizes the values of X from the lower
bound solution. To determine the values of Y while guaranteeing feasibil-
ity with respect to constraints (4.20), the procedure simply assigns each
retailer to the r-th closest open facility at level r for each r = 1, · · · , R.
Both heuristics are easy to implement and computationally inexpensive.
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With these upper bound identification heuristics, one may then proceed
with the standard subgradient algorithm to solve the original [RJIL]
problem. These heuristics are found to be effective by Chen et al. (2011).
For a 49-city data set, they find that the Lagrangian relaxation algo-
rithm is consistently able to identify feasible (upper bound) solutions
that are within less than one percent from the optimal solution with
computation times of less than one minute.

One potential limitation of the [RJIL] model is that it considers the
long-run average inventory cost under the continuous review model. In
practice, when facilities are disrupted, demand reallocation among the
working facilities is typically utilized as a short-term measure. That is,
the consideration of long-run average inventory cost is not necessarily
the most accurate approximation. One potential approach to overcome
this limitation is to consider a periodic review inventory model in which
demand can be reallocated, rather than a continuous review one. We
shall discuss a model in the coming section that utilizes this idea in a
slightly different application context.

4.5 Fulfillment Center Location for Online Retailers

Recent years have seen tremendous growth of online retail businesses
(e.g., Forbes, 2013). Online retail stores and platforms such as Amazon
and Alibaba are heavily investing in logistics infrastructure to enhance
distribution capabilities (e.g., Forbes, 2015). With the increasing focus
on delivery response times with the emergence of same-day delivery
businesses, rapid and cost-efficient distribution has become a key com-
petitive focus of online retailers.

Different from many traditional distribution networks serving brick-
and-mortar retail stores, one key operating characteristic of online
retail distribution systems is that the allocation of demand (orders) is
often performed on a per-order basis. That is, orders from the same
geographical market for the same item may be fulfilled by different
DCs, depending on the delivery time requirements of the orders and
inventory levels at different DCs (e.g., Xu et al., 2009; Acimovic and
Graves, 2014), in a way that minimizes total fulfillment costs. Note
that this mode of operations allows inventory pooling among multiple
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DCs without having to physically centralize operations. Compared with
traditional distribution models in which customer orders are fulfilled
using single sourcing (modeling-wise, where the Yij variables are binary),
this new mode of fulfillment, which leads to a dynamic multiple sourcing
arrangement, provides an opportunity to improve both dimensions of
customer service (response time and distance-to-market) and operating
costs in the fundamental trade-off. This opportunity arises from the
fact that statistical economies of scale of inventory pooling can now be
achieved while operating a denser facility network because inventory
can be shared among facilities.

To quantify the contrast between these online distribution systems
and traditional ones, additional modeling effort is required to develop
decision models for the design of such networks, as the basic models
(such as [SCD]) typically consider static demand allocation, often with
single sourcing, and do not capture the dynamic fulfillment feature of
online retail. In this section, we discuss a stochastic programming model
proposed by Mak (2012) for this type of problems.

4.5.1 Network Design with Dynamic Fulfillment

In this section, we present the problem formulation for the supply chain
design problem for online retailers with dynamic fulfillment, proposed
by Mak (2012). The problem consists of two phases. In the first stage
(the design phase), the network structure, i.e., location of DCs and
the allocation of retailers to DCs, are to be determined. We use the
binary variable Xj to indicate whether a DC is located at site j ∈ J , in
which case a fixed cost of fj is incurred. Besides, we use Zij to indicate
whether facility j ∈ J is connected to demand location i ∈ I, in which
case a fixed cost of cij is incurred. This cost term is used for modeling
the additional costs due to flexible shipment patterns, and may reflect
physical costs such as the use of more flexible but more expensive
transportation options, and the additional inconvenience costs due to
operational complexities.

Then, in the second (management) phase, the inventory and ship-
ment decisions are made given the network structure determined in
the design stage. We consider that the DCs operate under periodic
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review in the management phase. The key operating characteristic of
dynamic fulfillment is that the allocation of orders to DCs is dynami-
cally optimized based on the realized demand and inventory levels to
minimize overall fulfillment costs. At the beginning of a period, before
demand is realized, the inventory level at DC j is replenished up to
yj (with zero lead time). We use ω ∈ Ω to denote demand scenarios
with Ω being the sample space. For each scenario ω, we use Di(ω)
denote the realized demand at customer location i. After scenario ω ∈ Ω
is observed, shipment quantities, denoted by wij(ω) are optimized to
minimize the total shipping, lost sales shortage and inventory holding
costs (the unit costs are denoted by dij , pi hj , respectively). It can be
shown that, when demand and cost parameters are stationary (and
independent) over time, a stationary base stock policy is optimal. Thus,
it is sufficient to consider the expected cost of a single period in the
management phase, which will be equivalent the long-term average costs
for an infinite-horizon problem.

The problem of online retailer supply chain design problem [ORSCD]
can be formulated as the following stochastic integer program:

[ORSCD] : min
∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

cijZij +
∑
j∈J

hjyj + E

[∑
i∈I

piDi(ω)

∑
i∈I

∑
j∈J

(dij − pi − hj)wij(ω)

 (4.25)

s.t. Xj ≥ Zij for i ∈ I, j ∈ J (4.26)∑
i∈I

wij(ω) ≤ yj for j ∈ J, ω ∈ Ω (4.27)

∑
j∈J

wij(ω) ≤ Di(ω) for i ∈ I, ω ∈ Ω (4.28)

wij(ω) ≤ Di(ω)Zij for i ∈ I, j ∈ J, ω ∈ Ω (4.29)
Xj ∈ {0, 1} for j ∈ J

Zij ∈ {0, 1} for i ∈ I, j ∈ J

yj ≥ 0 for j ∈ J

wij(ω) ≥ 0 for i ∈ I, j ∈ J, ω ∈ Ω.
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In the problem formulation, the objective (4.25) is to minimize the
design-phase fixed costs of locating facilities and constructing arcs plus
the expected value of the inventory, shipping and shortage costs. The
firm first selects a subset of candidate sites at which to locate DCs
and assigns retailers to these DCs. Constraints (4.26) require that a
retailer cannot be connected to a DC unless the latter is opened. The
opened DCs order from the supplier with ample capacity and receive
shipments with zero lead time. After replenishments arrive, demand
realizations at retailers (i.e., ω) are observed. Given the information
on realized demand at retailers and inventory availability at DCs, the
flows from DCs to retailers are optimized to minimize total cost of the
current period minus the salvage value of the leftover inventory at the
end of the horizon, subject to the supply (4.27) and demand (4.28) flow
balance constraints. Finally, constraints (4.29) stipulate that flows are
only allowed on arcs that are constructed in the network design phase.

In the next section, we will discuss the solution procedure proposed
by Mak (2012), which allows the problem to be solved efficiently.

4.5.2 Lagrangian Relaxation Algorithm

The Lagrangian relaxation algorithm proposed by Mak (2012) makes
use of the network recourse decomposition (NRD) technique proposed
by Powell and Cheung (1994). The main idea behind the technique is
to find a piecewise linear (in the inventory levels y) and separable (by
candidate DC j) approximation to the recourse function value. This
is done by Lagrangian relaxation and decomposition of the recourse
problem into subproblems that can be solved efficiently.

Most solution techniques proposed in the literature (e.g., for the
[S-SCD] problem) for solving stochastic facility location problems involve
discretization of the sample space into discrete and disjoint scenarios
(see Snyder, 2006, for a review). Such an approach is desirable when the
modeler can identify a relatively small number of scenarios with manage-
rial significance. When scenarios are used to model random parameters
that follow discrete distributions (or sampled from continuous distribu-
tions), the number of scenarios required and the resulting problem size
can be enormous. For example, if there are 50 retailers each with 10
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possible levels of demand, 1050 scenarios (a practically infinite number)
are required to completely characterize the multi-variate distribution.
As a heuristic approach, one may consider only a manageable sample of
(say 1000) scenarios and formulate a deterministic equivalent problem.
An alternative is to employ the NRD method to be discussed below,
which allows us to approximate the recourse function value efficiently
even without the use of scenarios. This approach proves a promising
technique for obtaining approximate solutions to this class of stochastic
programming problems.

By relaxing constraints (4.28) and (4.29), and imposing penalty
multipliers ζi and ηij , respectively, the resulting problem is decomposable
by candidate DC locations j. Note that we use the same multiplier
vectors η and ζ for all ω ∈ Ω. While this may yield weaker lower bounds
than allowing the multiplier to vary with ω, we shall see that doing so
enables us to solve the subproblems efficiently. Computational results
from Powell and Cheung (1994) show that the approximations obtained
with the NRD technique provide good lower bounds to the recourse
function values. For a particular j ∈ J , the Lagrangian subproblem is
given by:

Vj(η, ζ) = min
∑
i∈I

(cij − ηijE[Di(ω)])Zij

+E
[∑
i∈I

d̂ijwij(ω) + hjyj

]
(4.30)

s.t. 0 ≤ wij(ω) ≤ Di(ω), for each i ∈ I, ω ∈ Ω
where: d̂ij = dij − pi + ζi + ηij .

Given nonnegative Lagrangian multipliers η and ζ, a lower bound to
[ORSCD] is given by:

L(η, ζ) =
∑
j∈J

min{Vj(η, ζ) + fj , 0}+
∑
i∈I
{(pi − ζi)E[Di(ω)]} . (4.31)

The subproblem (4.30) is a newsvendor problem with multiple
customers and heterogeneous underage costs. When demands are integer-
valued, it can be efficiently solved by the procedure proposed by Cheung
and Powell (1996). It is possible to apply similar reasoning for continuous
distributions. In particular, if the demands are normally distributed,
we can obtain the optimal objective value to (4.30) as follows.
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Proposition 4.4. Let Î = {i ∈ I|d̂ij ≤ hj} and let m = |I|. Sort the
retailers in set Î in increasing order of d̂ij , i.e., d̂1j ≤ d̂2j ≤ ... ≤ d̂mj ≤
hj . Furthermore, let d̂m+1 = hj . Then, the optimal objective value of
(4.30) is given by:

Vj(η, ζ) =
∑
i∈I

min{cij − ηijE[Di(ω)], 0}+Qj(y∗j ) (4.32)

where:

Qj(yj) = hjyj −
m∑
i=1

(d̂i+1,j − d̂ij)
∫ yj

0
Φ̄
(
s− µ(i)
σ(i)

)
ds

µ(i) = E

[
i∑

k=1
Dk

]

σ(i) =

√√√√V ar( i∑
k=1

Dk

)
and y∗j is the solution to the equation:

hj =
m∑
i=1

(d̂i+1,j − d̂ij)Φ̄
(
y∗j − µ(i)
σ(i)

)
. (4.33)

Proof. Let ρ(s, i) be the probability that the s-th unit of stock at DC j

is shipped to retailer i and ρ̂(s) be the probability that the unit is not
shipped out. Then, the expected recourse function, i.e., the value of the
expectation in (4.30) given yj = S, is given by:

Qj(yj) =
∫ yj

0

∑
i∈I

[
d̂ijρ(s, i) + hj ρ̂(s)

]
ds.

The optimal value is then given by minyj≥0Qj(yj). Note that for
i ∈ I where d̂ij > hj , ρ(s, i) = 0 for all s. Sort the remaining retailers
(denoted by Î) in increasing order of d̂ij , i.e., d̂1j ≤ d̂2j ≤ ... ≤ d̂mj ≤ hj .
Then, the probabilities are given by:

ρ(s, i) = P

(
i∑

k=1
Dk ≥ s

)
− P

(
i−1∑
k=1

Dk ≥ s
)

ρ̂(s) = P

(
m∑
k=1

Dk < s

)
.
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As D is normally distributed, the probabilities are given by:

P

(
i∑

k=1
Dk ≥ s

)
= 1− Φ

(
s− µ(i)
σ(i)

)
= Φ̄

(
s− µ(i)
σ(i)

)

where: µ(i) = E

[
i∑

k=1
Dk

]

σ(i) =

√√√√V ar( i∑
k=1

Dk

)
.

Knowing the above and letting d̂m+1 = hj , we may express Qj(yj) as
follows:

Qj(yj) = hjyj −
m∑
i=1

(d̂i+1,j − d̂ij)
∫ yj

0
Φ̄
(
s− µ(i)
σ(i)

)
ds.

It is easy to show that Qj(yj) is convex and the optimal y∗j can be
found by solving for the first-ion, which order condition (4.33).

Since the (w, y) terms and the Z terms in (4.30) are not linked, they
can be optimized separately. Let the optimal inventory level yj found
by solving (4.33) be y∗j , then, the optimal value of the expected value
term in (4.30) is given by Qj(y∗j ). Moreover, the optimal Z values can
be easily found by setting Zij to 1 if its cost coefficient is negative and
0 otherwise, which yields (4.32).

Note that equation (4.33) is a generalization of the critical frac-
tile condition for the standard newsvendor problem. It can be solved
efficiently using numerical methods (e.g., Newton’s method). Using
Proposition 4.4, it is possible to obtain a lower bound to [ORSCD]
given a set of dual multipliers (η, ζ). An important point to note is
that, using our Lagrangian relaxation procedure, each iteration involves
solving one subproblem (4.30) for each j separately. In practice, for
decentralized decision making, different locations j ∈ J can be man-
aged by separate divisions of the firm, or even by separate companies,
e.g., if the firm outsources its distribution operations in different loca-
tions to different third-party logistics service providers. Based on our
decomposition approach, we make the following observation:
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Remark 4.1. The Lagrangian relxation algorithm requires decision
makers managing locations in J to solve problem (4.30). In each iteration,
each location j reports to a central coordinator the optimal values of
E[wij(ω)]. The coordinator will then update the multipliers ζi and
communicate the new values to the locations.

Remark 4.1 suggests that location managers only need to communi-
cate with the central coordinator by exchanging partial information, but
not with each other. This provides an effective coordination mechanism
for decentralized supply chains, in which individual location managers
do not necessarily have the incentive to cooperate, and in many cases,
may even compete with each other. The job of the coordinator is to
update the dual multipliers ζi, which can be interpreted as the prices
per unit of expected shipment to retailer i. An interesting point is that
not only the inventory control decisions can be decentralized, but the
network design decisions as well. Furthermore, note that as the dual
multipliers ηij are associated with constraints (4.29) that are specific to
each location j, updating of multipliers ηij can be done by each location
j independently.

For the coordinator’s problem of updating average unit prices ζi, the
standard subgradient procedure (e.g., Algorithm 2) is not applicable,
as it requires a procedure to estimate tight upper bounds given infor-
mation from the lower bound solutions. For our problem, the recourse
function value, i.e., the expected value term in [ORSCD], needs to
be evaluated in order to find a feasible solution or an upper bound.
While approximate methods for doing so exist in the literature (e.g.,
Cheung and Powell, 1996; Harrison and Van Mieghem, 1999), it is not
practical to embed any of these as a subroutine and run it for large
number of iterations (in the order of thousands) since doing so would
significantly increase computation time. Therefore, Mak (2012) uses an
alternative subgradient procedure that guarantees convergence without
requiring an upper bound, known as the variable target value method
(see Sherali et al. (2000) for details). To obtain a cost estimate of a
feasible solution (not necessarily an upper bound), we fix the network
structure to the lower bound solution (i.e., X and Z variables) and solve
the resulting restricted problem. This can be done by a distributionally-
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robust optimization approximation (see, for example, Goh and Sim,
2010).

4.5.3 Discussion

In the solution algorithm, we impose state-independent Lagrangian
multipliers, i.e., they take on the same values across all demand and
disruption realizations. While the exact recourse value for our stochastic
program can be obtained by using state-dependent multipliers, the
number of such multipliers to be determined would equal the number of
possible states of the system which is infinite with a continuous demand
distribution. Therefore, we use state-independent Lagrangian multipliers
for practical reasons. Similar techniques based on Lagrangian relaxation
of weakly-coupled recourse problems have been utilized in the literature
to approximate recourse functions of stochastic programming problems.
Recent papers by Kunnumkal and Topaloglu (2008) and Topaloglu and
Kunnumkal (2006) apply similar techniques to approximate the value
functions in stochastic dynamic programming. Such techniques provide
computationally efficient approximations for the recourse function values
that would otherwise require computationally expensive discretization
methods. Furthermore, under the decentralized decision making regime
discussed in Remark 4.1, this allows the coordination prices ζi to be
deterministic, and thus reducing the information sharing requirement
between the individual locations and the central coordinator.

The dynamic fulfillment operations entail interesting considerations
in the network design strategy. For instance, under the threat of dis-
ruptions of DCs (see Section 4.4), dynamic fulfillment enables both risk
pooling (inventory sharing among demand sources) and risk diversifi-
cation (placement of smaller inventory volumes at more locations to
better contain disruption damage) simultaneously. Mak and Shen (2012)
evaluate the optimal design of the supply chain network under such a
scenario. Furthermore, to evaluate the strategic implications of dynamic
shipment configurations on optimal network design, Lim et al. (2016)
employ a continuous approximation approach to analyze the strategic
factors and identify several insights to the contrary of previous studies.
We discuss this next in Section 4.6.
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4.6 Analytical Study on Effects of Inventory Sharing on Network
Configuration

In recent years, firms have taken advantage of advancements of infor-
mation technology to improve supply chain operations via enhancing
operational flexibility. The dynamic fulfillment strategy for online re-
tailers discussed in Section 4.5 is exemplary of this movement (see,
for example, the case of Amazon discussed in Xu et al. (2009)). In
offline businesses, similar examples are also becoming commonplace.
IBM utilizes a “neighborhood” stocking strategy, in which an order
may be allocated to any stocking location within a certain radius of
the customer location, for its service parts logistics. This strategy is
estimated to save $5 million per year in costs, without jeopardizing
customer service (Gresh and Kelton, 2003). For its import supply chain,
Dell performs diversion of in-transit inventory to respond to dynamically
evolving demand forecasts (Foreman et al., 2010).

As discussed in Section 4.5, this class of dynamic and adaptive
network operations give rise to makeovers in fundamental network
design strategies. Particularly, these enhance the agility of supply chain
networks, i.e., their ability to quickly adapt to changes in operating
environments. Throughout Section 4, one common planning uncertainty
considered in most of the models we have discussed is in customer
demand volumes. In such contexts, a key element of supply chain agility
is responsively allocating inventory to match with orders so as to fulfill
demand with as high probability and as low cost as possible. Classical
findings in the literature of inventory theory state that inventory sharing
(i.e., risk pooling, see Eppen (1979)) is an effective means to maintain
customer service while lowering inventory holding costs in supply chain
networks. Lim et al. (2016) perform an analytical study to evaluate how
agile modes of supply chain operations enhance the inventory sharing
capabilities of supply chain networks, and, as a result, how they impact
the optimal network design. We shall discuss their model and major
findings in this section.

Particularly, Lim et al. (2016) focus on the interactions between the
optimal network design and two modes of inventory sharing. The first is
the conventional physical pooling strategy of using a centralized stocking
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location (a DC) to fulfill demand from multiple sources. The second
is the dynamic fulfillment strategy, as discussed in Section 4.5, which
allows inventory to be shared among multiple DCs with informational
pooling. In terms of network design strategy, physical pooling is enhanced
when the network is more consolidated, i.e., there are fewer facilities
each handling a larger demand volume; whereas informational pooling
is more depended upon when the network is deconsolidated, i.e., there
are more facilities each handling a smaller demand volume. While it is
intuitive that both modes of inventory pooling help reduce inventory
costs, the balance between the two requires careful balance of various
cost factors, such as fixed facility investment (and operating) costs and
transportation costs.

4.6.1 Problem Description and Model

Lim et al. (2016) consider a firm deciding to locate a number of DCs to
serve a number of geographically-dispersed customer demand points in
a large service region. Following the CA approach outlined in Section
2.3, we consider the demand points to be uniformly distributed over the
plane with homogeneous density δ. Each demand point has a normally-
distributed random demand with mean µ and standard deviation σ. As
a result of spatial homogeneity, it is sufficient to consider the density
of DCs, or equivalently, the distance X between adjacent DCs, rather
than the specific locations. We consider distances under the `−2 metric.
For a demand point, we refer to the nearest DC to it as its primary
DC, and reciprocally, we say that the demand point is in said DC’s
primary influence area. Each DC holds an inventory level given by the
mean plus Z1 times the standard deviation of the aggregated demand
of customers within its influence area (i.e., Z1 is the safety stock factor).
Physical pooling of inventory occurs at each DC, as the inventory held
at each DC is primarily used to serve the aggregated demand from all
demand points within the primary influence area.

Besides physical pooling, the DCs share inventory with each other
using dynamic fulfillment. In particular, if a DC stocks out, the excess
demand in its primary influence area can be re-routed to nearby DCs.
We consider a neighborhood sharing strategy, in which every M2 DCs,



98 Applications in Supply Chain Settings

in a square-shaped configuration (see Figure 4.2), form an inventory
sharing group within which such re-routing is possible. To model such
operations, we consider that DCs replenish inventory under periodic
review with zero lead time. When demand is realized, a linear program
is solved within each inventory sharing group to minimize the overall
costs of shipping from DCs to demand points and shortage penalty.
Similar to the case discussed in Section 4.5, we consider the expected
costs in a single period that reflects the long-run average performance
of the network. Lim et al. (2016) derive the major cost components of
operating the network as follows. Note that the number of DCs to be
located is a decision variable, and the overall service region is assumed to
be very large. Thus, the model considers the average costs per demand
point.

 

 

Service region  

DC with primary influence area of size S
2 

Inventory sharing group with M
2
=16 DCs 

S 

Figure 4.2: Segment of Service Region with Square-shaped Primary Influence Areas
and Inventory Sharing Groups
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Cost Components

The first major cost component is the fixed location and operation costs
of DCs. We consider the firm to incur an annualized cost of f to locate
(finance) and operate each DC. Because there are δX2 demand points
in the primary influence area of a DC, the average fixed location costs
per demand point is given by f

δX2 . Note also that it is straightforward
to include variable costs of DC operations, but Lim et al. (2016) find
that such terms would not affect the analysis and thus we omit them
for brevity throughout this discussion.

Second, we discuss the inventory related costs, which include the
holding costs and shortage penalty costs. First, because we consider a
periodic review model under a base stock policy, we omit the costs of
holding cycle stocks as they only depend on average demand volume but
not the decision variables, and focus on safety stock costs. With a safety
stock factor of Z1, each DC holds a safety stock level of Z1

√
δX2σ2,

incurring a holding cost of hZ1
√
δσX. Pro-rated by δX2 demand points,

the average holding cost per demand point is hσZ1√
δX

.
Under the dynamic fulfillment arrangement, demand can be fulfilled

from any DC within the same inventory sharing group. Conversely,
shortage (backorders assumed) is incurred only when all DCs in the
same inventory sharing group stock out concurrently. Therefore, the
expected amount of backorders of an inventory sharing group is given
by E[D2 −M2δX2µ − Z2

√
δMσX]+, where D2 denotes the random

aggregate demand within the inventory sharing group. With normally-
distributed demand, the expected shortage is given by (Z2)M

√
δσX,

where L(z) is the standard normal loss function L(z) = φ(z)−zΦ̄(z); and
Φ̄(·) and φ(·) are the complementary cumulative distribution function
and density function of the standard normal distribution, respectively.
Dividing among the δM2X2 demand points in the group, the average
expected backorder costs per demand point is given by pσL(Z2)√

δXM
=

pσZ1√
δX

L(Z2)
Z2

.
Next, we discuss the modeling of distribution costs. Unlike models

with static sourcing (i.e., in which the DC that serves a customer is
fixed as a long-term decision), the dynamic fulfillment model considers
multiple DCs within the same inventory sharing group as candidates
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to serve a demand point. Under our two-stage setting, the shipments
from DCs to demand points within an inventory sharing group can
be optimized after demand quantities are realized, by solving a linear
program. Lim et al. (2016) utilize dimensional analysis to develop an an-
alytical expression for the expected distribution costs, i.e., the expected
optimal objective value of said linear program, as we discuss below.

Consider an inventory sharing group with M2 DCs. For tractability,
Lim et al. (2016) partition the influence area of each DC intoK subzones
of equal areas and define an aggregate demand point at the centroid of
each subzone to represent the aggregated demand of demand arising in
the subzone. As a result, there are KM2 aggregate demand points, each
with a normally distributed demand with mean µ̂ = δX2

K µ and standard
deviation σ̂ =

√
δX√
K
σ. Lim et al. (2016) consider K = 4, and also find

that the choice of more refined partitions (i.e., larger K) would not lead
to significant changes in the resulting expected cost expression.

Upon realization of demand at the aggregate demand points, the
problem of optimizing shipment quantities (denoted by wij from DC j

to demand point i) and backorder levels (denoted by bj for DC j) can
be formulated as follows:

min
w,b

M2∑
j=1

KM2∑
i=1

dijwij + d̄bj


s.t.

KM2∑
i=1

wij ≤ yj + bj , for j = 1, ...,M2

M2∑
j=1

wij ≥ ei, for i = 1, ...,KM2

wij ≥ 0 , for i, j = 1, ...,M2.

In the above, yj = δX2µ+Z1X
√
δσ denotes the inventory level held at

DC j, ei denotes the realized demand at demand point i, dij denotes
the distance between demand point i and DC j, and d̄ is constant larger
than the maximum distance between any DC and any demand point
(such that backorders are more costly than any shipments within the
group). We are interested in the total transportation distance (in item-
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miles), excluding the backorder penalty. Let T =
∑KM2
i=1

∑M2
j=1 dijw

∗
ij ,

where w∗ denotes the optimal values of the w variables in the above
linear program. Then, the expected shipping distances are given by
T̄ = E[T ]

M2 , taken over the probability distribution of demand. Note that
T̄ has dimension item-miles.

Lim et al. (2016) apply the following dimensional analysis argument.
First, the problem involves two dimensions: items and miles, together
with six variables: the independent variables µ̂ (in items), σ̂ (in items),
X (in miles), Z1 (dimensionless),M (dimensionless), and the dependent
variable T̄ (in item-miles). Hence, we obtain the following dimensional
matrix:

A =
[

1 1 0 0 0 1
0 0 1 0 0 1

]
with rank(A) = 2. By Theorem 3.5, there can be four independent
π-groups. Lim et al. (2016) consider the following groups: T̄

µ̂X , M , Z1,
and σ̂

µ̂ . By the π-theorem, the relationship between the π-groups can
be written in the form of:

T̄

µ̂X
= f

(
M,Z1,

σ̂

µ̂

)
, or equivalently T̄ = µ̂Xf

(
M,Z1,

σ̂

µ̂

)
.

Lim et al. (2016) identify the unspecified function f(·) approximately
by regression over extensive simulation data:

T̄ = 1.43µ̂X + 0.329σ̂L(Z1)X log2M. (4.34)

The choice of this approximation is justified as follows. First, in the
backorder setting, the average realized demand in the influnece area
of a DC (4µ̂) will need to be shipped for a distace no shorter than
that from the primary DC (which can be shown to be 0.357X). This
corresponds to the first term in (4.34). Second, after attempting to
fulfill as much demand as possible from the primary DCs, there will be
some shortage at certain demand points (as well as surplus inventory
at certain DCs). The amount of shortage (per aggregate demand point)
is proportional to σ̂L(Z1). The average shipping distance to fulfill
such shortages corresponds to the expected cost of a transportation
problem with random demand and supplies, which has been proved
by Daganzo and Smilowitz (2004) to increase in n log2 n as n, the
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number of demand/supply points (M2 in this case), goes to infinity.
Dividing among the DCs in the group, the average (per DC) expected
transportation cost to fill unfulfilled demand is then proportional to
σ̂L(Z1) log2M .

Based on this approximation, Lim et al. (2016) propose the following
approximation:

Shipping distance per inventory sharing group
= k1δµX

3 + k2
√
δσX2L(Z1) log2M,

where k1 = 0.357 and k2 = 0.082 are dimensionless constants. Observing
that the two terms reflect the shipping costs from primary and secondary
DCs, respectively, Lim et al. (2016) allow the unit costs for these two
types of shipments (u and v, respectively) to be possibly different. This
allows the possibility of capturing additional costs of shipping from
secondary DCs, such as additional administrative costs or expedited
shippnig costs to recover for the increased shipping distance.

Optimization Problem Formulation and Analysis

Integrating the cost components discussed above, we may formulate the
supply chain design problem as:

min
X,Z1,Z2

C(X,Z1, Z2)

= min
X,Z1,Z2

f

δX2 + hσZ1√
δX

+ pσZ1√
δX

L(Z2)
Z2

+ uµk1X

+vk2σ√
δ
L(Z1) log2

(Z2
Z1

)
. (4.35)

The first term constitutes the fixed location costs. The second and
third reflect the inventory-related (i.e., holding and backorder penalty)
costs. The fourth and fifth terms correspond to the shipping costs. The
cost function involves three decision variables that characterize the
supply chain design strategy: the separation between adjacent DCs
X, which determines the density of DCs, the local safety stock factor
Z1, which determines the intensity of physical pooling, and the group
safety stock factor Z2, which determines the intensity of informational
pooling. Therefore, by analyzing the properties of the optimal solution
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(X∗, Z∗1 , Z∗2 ), one can obtain insights into the interactions between the
strategic choices of network density and pooling arrangements.

We first discuss a result characterizing the optimal choice of pooling
modes given fixed X.

Lemma 4.1. The optimal solution to (4.35), for given X, is given by
the unique solution to the following equations:

h = vk2X log2M Φ̄(Z1) + pΦ̄(Z2), (4.36)

Z1 = R−1
( ln 2 p
vk2X

φ(Z2)
Z2

)
, (4.37)

where R(z) = L(z)/z.

It is interesting to note that the first optimal condition (4.36) exhibits
a similar structure as the critical fractile condition in the newsvendor
problem. In particular, the optimal stocking levels at DCs should balance
the opportunity costs of over-stocking and under-stocking at the margin.
The marginal over-stocking cost is given by the additional holding cost h
for the marginal unit of safety stock. The marginal under-stocking cost
is given by the expression on right hand side of (4.36): when the primary
DC stocks out (with probability Φ̄(Z1)), the marginal cost incurred is
given by the unit shipping cost from a secondary DC (vK2X log2M);
and when the entire inventory sharing group stocks out (with probability

¯Φ(Z2)), the marginal cost incurred is the backorder penalty. The second
optimality condition (4.37) characterizes the optimal balance between
safety stock factors Z1 and Z2. It can be shown that, under this condition,
the optimal inventory sharing group size M (= Z2/Z1) is decreasing
in Z1. This indicates that as each DC stocks more safety stock, which
enhances physical pooling, it is optimal to reduce the intensity of
informational pooling by downsizing the inventory sharing groups. In
other words, the two inventory sharing modes work as substitutes.

Using Lemma 4.1 and further optimizing over X, Lim et al. (2016)
characterize the optimal solution as follows.

Proposition 4.5. The optimal solution to (4.35) is given by the unique
solution to (4.36), (4.37), and

µuk1 = 2f
δX3 + σZ1√

δX2
(h+ pR(Z2)) . (4.38)
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The third optimality condition (4.38) highlights the fundamental
trade-off in the choice of DC network density. In particular, it is optimal
to strike a balance between transportation costs, reflected by the term on
the left of the equality sign, and the facility costs and inventory-related
(including backorder penalty) costs, reflected by the terms on the right
hand side. Further, as in the conventional models, it is notable that
transportation costs considerations favor a higher density (i.e., shorter
shipping distances to customers), while facility cost considerations favor
the opposite, due to economies of scale. The new perspective in the
model is the consideration of inventory and shortage costs involving the
two inventory sharing modes. It is not immediately obvious whether the
optimal balance between the two inventory sharing modes would favor
a denser or less dense network configuration. Further scrutiny into this
issue leads to the following observation.

Proposition 4.6. The impacts of the two modes of inventory sharing
on network design are as follows:

∂2

∂X∂Z1
C(X,Z1, Z2) ≤ 0 and ∂2

∂X∂Z2
C(X,Z1, Z2) ≥ 0.

In particular, the first item in Proposition 4.6 suggests that fixing Z2, a
larger value of Z1, i.e., higher intensity of physical pooling, favors a larger
X, i.e., lower network density. This is due to the fact that, consistent
to findings from conventional models, physical pooling works best when
each DC handles a larger influence area such that more demand sources
are pooled. The second item suggests that the opposite holds for Z2. That
is, a higher intensity of informational pooling favors a higher network
density. This is caused by the fact that the informational pooling can be
performed at lower (shipping) costs if the DCs are spaced closer together,
such that customers are, on average, closer to secondary DCs. Overall,
Proposition 4.6 illustrates the opposing effects of the two inventory
sharing modes on the optimal network configuration. The interactions
between the two help explain some interesting contrasts between the
optimal network design strategy when both inventory sharing modes
are active and in conventional models where only physical pooling is
present, as we discuss below.
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Contrasts with Conventional Results

Based on the analysis of the model (4.35), Lim et al. (2016) find that
well-known results from the conventional literature assuming physical
pooling may fail to hold. In particular, they raise two results from
“conventional wisdom” and show how they break down under the new
model. The first conventional wisdom is that

If the inventory service level becomes higher, it is optimal to decrease
the density of DCs.

This result was found by Shen et al. (2003) in the study of the
[SCD] model, in which physical pooling causes an economies of scale
effect such that it is beneficial to centralize larger demand volumes at a
smaller number of DCs. As service level increases, the weight of such
benefits are enhanced, and thus the optimal network density decreases.
The same qualitative finding is also confirmed in subsequent research
(e.g., Naseraldin and Herer, 2008). The same holds for the CA model
discussed in Section 2.3 (see Table 2.1). Interestingly, Lim et al. (2016)
show that this managerial insight does not hold when informational
pooling is also opositpresent.

Proposition 4.7. When the penalty cost parameter p increases, the
optimal value of X in (4.35) decreases.

Proposition 4.7 shows that, when the network design is jointly
optimized in the presence of both forms of inventory sharing, the
aforementioned conventional wisdom is reversed. Note that, as service
level is endogenously determined in the model, the proposition is stated
with regard to an exogenous increase in penalty cost p. While this result
appears counterintuitive, it can be explained by the interactions between
the two sharing modes as characterized by Proposition 4.6. In particular,
while an increase in penalty cost encourages inventory sharing, the
net effect on optimal density depends on which sharing mode takes
command, as they have opposite effects on optimal density. Proposition
4.7 suggests that the effect of informational pooling dominates that of
physical pooling, resulting in a net increase in optimal network density.
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Next, we discuss a classical insight regarding transportation costs.

If the unit transportation cost for shipping from DCs to customers
becomes higher, it is optimal to decrease the density of DCs.

This claim holds for the UFL problems and its extendions, including
the [SCD] problem and its variants. With an increase in unit trans-
portation cost, the benefits of locating more DCs to reduce shipping
distances are enhanced, overcoming the additional location costs. In
the case of inventory-location problems with physical pooling, the same
directional effect occurs despite the associated increase in inventory
costs due to the pooling of smaller demand volumes at individual DCs.
Interestingly, we find that the effect of such change in the presence of
informational pooling is less straightforward.

Proposition 4.8. When u increases, the optimal X value in (4.35)
decreases. In addition, when v increases, the optimal X value in (4.35)
increases.

Proposition 4.8 suggests that the effects of changes in unit trans-
portation cost parameters u and v, corresponding to shipments from
primary and secondary DCs, respectively, take opposite directions. For
shipments from primary DCs, an increase in unit transportation cost
(u) causes the optimal network density to increase, consistent with con-
ventional results. However, for shipments from secondary DCs enabled
under informational pooling, an increase in unit transportation cost (v)
leads to a decrease of optimal network density, i.e., increase in shipping
distances. This is due to the interactions between the two inventory
sharing modes - when informational pooling becomes costly to perform
due to increased shipping costs, it is optimal to strategically enhance
physical pooling, favoring the location of fewer but larger DCs.

Furthermore, the analysis reviewed in Section 4.6 indicate that the
form of inventory sharing can have profound effects on the optimal
supply chain design strategy. Lim et al. (2016) argue that there is a
need for refinement of conventional understanding developed based on
classical models to account for emerging supply chain operations in the
new era. With the rapid integration of supply chain management with
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developments such as data-driven e-commerce and big data analytics,
various strategic questions remain to be addressed. We concur that this
is a promising area for future research.

4.7 Discussion

The integrated modeling approach originated from supply chain mod-
eling. Since then, most applications can be found in the supply chain
domain. While many basic problems can be studied, there remains sub-
stantial opportunity for further research. Much of the existing studies,
such as the ones reviewed in Sections 4.1 and 4.3, consider an expanded
breadth of facility operational features, such as capacity and multi-
commodity issues. Studies such as the models reviewed in Sections 4.4
and 4.5, on the other hand, extend the standard models along the time
dimension by considering two-stage stochastic optimization problems.
We believe that one promising area for future research is to further
extend this line of problems to multiple time periods, to capture the
strategic dynamic expansion and diffusion of facility networks under
stochastic demand. Traditionally, dynamic facility location problems
have been mainly studied in deterministic settings, mainly because of
the intractability of stochastic multiple stage problems. With the recent
developments in methodologies such as approximate dynamic program-
ming (e.g., Powell, 2007), it is now promising to study the optimal
path of facility deployment over time. Using such methodologies, an
interesting technical aspect would be to formulate approximate value
functions for future deployment and operations of facility networks
as a function of facilities currently (and previously) located. Careful
application of modeling techniques that have been employed to model
various operational features (e.g., the use of nonlinear models) could
potentially be useful.



5
Applications in Emerging Areas

In recent years, researchers have expanded the scope of integrated
modeling to applications beyond the supply chain domain. Location
planning problems arising in the health care, transportation, energy,
retail and service sectors all exhibit distinctive problem characteristics
that require careful modeling and analysis. Thanks to rapid recent
development in modeling and optimization techniques, state-of-the-art
models have been proposed and studied in various cutting edge problems.
In this chapter, we provide a review of some examples of recent work
in these emerging research areas. These examples cover the topics of
sustainable transportation, renewable energy, retail strategy and health
care, all of which are themes that have drawn considerable interest
in the broader operations research/ management science community.
Through this, we hope to convey the message that facility location
research, despite being a traditional area of study, still has important
contributions to make (as well as challenges to tackle) going forward in
some of the cutting edge areas.

108
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5.1 Infrastructure Planning for Electric Vehicles

In this section, we review an application of the integrated modeling
methodology in designing the support infrastructure system for electric
vehicles (EVs) with battery switching. With rising concerns over energy
security and greenhouse gas emissions, EVs have been seen as one
of the most commericially viable green alternatives to conventional
gasoline cars. Both the public and private sectors have poured in massive
investments to promote adoption of EVs. For example, the China and
US Federal governments have committed $15 billion and $2.4 billion,
respectively, in grants to support EV technology, manufacturing and
infrastructure developments. The Nissan-Renault Alliance, an active
player in EV development, is reported to have spent over $4 billion in
EV-related research and development.

One of the most critical drawbacks of the current EV technology
is the short autonomous driving range of the vehicles. Nissan Leaf,
the best-selling EV model worldwide, has a range of about 105 miles
before it needs to be recharged. Combined with the relatively long
recharging times, in the order of 20-30 minutes for a 80% charge using the
fastest commercial chargers today, the range limitation poses significant
inconvenience to potential buyers of EVs. To match the convenience
of gasoline cars, which can be conveniently refueled at gas stations
within five minutes, the technology of battery swapping was proposed
by firms such as Better Place (an EV-infrastructure operator) and Tesla
(an EV manufacturer). Using this technology, an EV can be refueled
by mechanically replacing the battery, which only takes less than two
minutes, at specialized facilities known as battery swapping stations.
The swapped-out battery can then be recharged at the battery swapping
station and later be used for another EV.

However, to fully match the convenience of gasoline cars, the network
of battery swapping stations must provide a high level of accessibility,
comparable with the very dense network of gas stations. This entails the
important planning problem for firms such as Better Place and Tesla in
determining locations for the battery swapping stations. These facilities
are highly capital intensive, costing up to $2 million apiece to deploy,
due to the high cost of the battery swapping equipment. Furthermore,
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as each battery may cost $8,000 to $10,000 to purchase, the cost of
capital involved to equip all swapping stations with sufficient batteries
is very significant.

The planning problem of locating battery swapping stations in
a transportation network encompasses two major factors. First, EV
adoption is still at an infacy stage, and thus adoption and usage patterns
are highly uncertain. This calls for planning approaches that provide
robust solutions in light of the inherent planning uncertainty, particularly
where there is no or little data available regarding EV driving patterns of
the region in question. Second, the operating characteristics of charging
stations, particularly with regard to inventory requirements of spare
batteries and their charging needs, carry subtle impact on the selection
of locations. Taking into account both problem features, Mak et al.
(2013) propose an integrated optimization model to select a set of
locations that minimizes facility (land, installation and operating) and
expected inventory (for holding batteries at stations) costs.

5.1.1 Basic Model

We shall review the swapping station location model proposed by Mak
et al. (2013). Consider a transportation network consisting of a set P of
travel paths. To cover travel needs, the swapping stations must provide
coverage of segments of travel paths longer than half the range of the
EV, such that round trips can be completed on such segments. Let
Q be the collection of such subsegments (referred to as “subpaths”);
we let bpq = 1 if subpath q (∈ Q) is a part of path p (∈ P ), and 0
otherwise. Consider a set of candidate facility locations J along the
transportation network. Let ajq = 1 if candidate location j (∈ J) is
located along subpath q (∈ Q), such that a swapping station at j can
cover EV swapping demand traveling along q. Let fj denote the fixed
cost of locating a swapping station at j, and h be the cost of holding
a battery in stock at a swapping station. Furthermore, let gj be the
maximum capacity of batteries that can be stocked at location j. This
capacity limit is given by the minimum of the physical capacity on
storage space, and the power load capacity that limits the number of
batteries that can be recharged in parallel at the same location.
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We define the binary decision variable Xj to indicate whether a
station is located at j (Xj = 1) or not (= 0). Further, we use Zjq = 1
(Yjp = 1) to indicate that a swapping station at j covers swapping
demand along subpath q (path p). Furthermore, let Ij(Y) denote the
required number of spare batteries to be stocked at station j to serve
the collection of paths as indicated by the decision variables Y. As
demand is uncertain, we consider Ij(Y) to be a random variable, the
explicit formulation of which will be discussed later. Then, the cost-
minimization model for battery swapping station location (abbreviated
as [BSL]) can be formulated as follows:

[BSL] : min
∑
j∈J

(fjXj + hE [Ij(Y)]) (5.1)

s.t. Yjp ≥ bpqZjq for j ∈ J, p ∈ P, q ∈ Q (5.2)∑
j∈J

ajqZjq ≥ 1 for q ∈ Q (5.3)

Yjp ≤ Xj for j ∈ J, p ∈ P (5.4)
P (Ij(Y) ≤ gj) ≥ 1− εg for j ∈ J (5.5)

Xj ∈ {0, 1} for j ∈ J
Yjp ∈ {0, 1} for j ∈ J, p ∈ P
Zjq ∈ {0, 1} for j ∈ J, q ∈ Q. (5.6)

The objective function (5.1) is to minimize the cost of locating
swapping stations and the expected cost of equiping them with sufficient
batteries to meet swapping demand. Constraints (5.2) require that, if
subpath q is to be covered by a station at j, then the station at j serves
swapping demand for all travel paths p that include q as a subsegment.
Constraints (5.3) require that all subpaths be covered by some station,
and (5.4) stipulate that a station must be located at j if the location
is used to cover swapping demand on any path p. Chance constraints
(5.5) require that the number of batteries to be required at a swapping
station at j to not exceed capacity gj with high enough probability
1− εg. Note that, because swapping demand is uncertain, the number of
batteries required is a random variable, and thus constraints (5.5) take
the form of chance constraints. In the next subsection, we discuss how
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these chance constraints and the expected inventory cost term in (5.1)
can be expressed in tractable formulations, by modeling the operating
and charging characteristics of swapping stations.

5.1.2 Operating Characteristics of Swapping Stations

Model [BSL] is an extension of the set covering problem discussed in
Chapter 1. In particular, if the battery inventory cost terms in (5.1)
and the battery charging capacity constraints (5.5) are removed, the
decision variables Y will become redundant, and the problem reduces
to one of determining the minimum cost to locate facilities to ensure
that all subpaths in set Q are covered. However, as the costs of carrying
batteries at swapping stations are very significant, it is imperative to
fully capture their implications on optimal location design by delving
into the operational characteristics of battery swapping.

Battery Swapping Considerations

We first obtain the expected inventory cost in (5.1) by developing a
model for battery swapping operations. Suppose the arrivals of demand
for swapping on a travel path p at some observation point follows a
Poisson process with rate λp (which may be uncertain to the planner).
We also consider the arrival processes associated with different paths to
be independent. As swapping demand on different paths are directed to
some swapping station, the arrival process of EVs requiring swaps will be
the superposition of the Poisson processes associated with the individual
paths, and is thus a Poisson process. In particular, for a station at j,
the arrival rate of swapping demand is given by λj =

∑
p∈P λpYjp.

When a battery is unloaded at a swapping station upon a swap, it
is recharged and then later swapped onto another incoming EV. When
the station holds an inventory of multiple batteries, we assume that
batteries are reused in first-in, first-out (FIFO) order for simplicity.
Under the FIFO order, an unloaded battery can be recharged until
all other batteries at the station are used, and the next swap request
arrives. That is, if there are Ij batteries at station j, a battery can be
recharged for an amount of time equal to the sum of Ij consecutive
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interarrival periods. We consider a service requirement that at least α
(> 0.5) proportion of swapping requests are fulfilled by batteries that
have been recharged for at least t time units. Note that this service
requirement is equivalent to requiring that there are fewer than Ij EV
arrivals within t time periods with probability of at least α.

As the arrival process of EVs at station j is Poisson with rate λj ,
the number of EV arrivals within a time period of t follows a Poisson
distribution with mean λjt. Using the normal approximation for the
Possion distribution, the number of batteries needed to satisfy the
service requirement is given by:

Ij = tλj + Φ−1(α)
√
tλj = t

∑
p∈P

λpYjp + Φ−1(α)
√
t
∑
p∈P

λpYjp, (5.7)

where Φ−1(·) is the inverse cumulative distribution function of the
standard normal distribution.

If λp is precisely known to the planner, then (5.7) can be directly
substituted in (5.1) (without the expectation operator as the quantity
is deterministic) and (5.5) (where the chance constraint would become
deterministic). Then, following the treatment in Section 3.2, one can
replace Yjp in (5.7) with Y 2

jp to convert the resulting objective function
(5.1) and capacity constraint (5.5) in SOCP form.

Planning Uncertainty

In practice, however, it is not always reasonable to consider demand
rates to be known precisely. EV infrastructure planning suffers from
a well-known chicken-and-egg problem: consumers do not adopt (in
mass scale) unless the infrastructure is in place; while the planner
suffers from planning uncertainty and may even be unwilling to invest
in infrastructure without observing the demand pattern. In this section,
we discuss how to tackle uncertainty in the expectation and probability
terms of (5.1) and (5.5), respectively.

The overaching difficulty in the EV planning context is the lack of
data. In particular, the key planning uncertainty lies in the values of
the swapping demand rates λp, which depend on usage patterns as well
as adoption levels of EVs. While travel survey data, e.g., the California
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Household Travel Survey (California Department of Transportation,
2010), can be used to forecast usage patterns of EVs, one has to bear in
mind that such data are collected on conventional vehicle types which
may exhibit different usage patterns than EVs. Similarly, forecasts of
adoption levels, at the relatively early stage of market penetration, may
exhibit significant errors. Therefore, we attempt to develop decision
models that support decisions that are robust with respect to both
planning uncertainty and possible mis-specification, or ambiguity, of
data. The modeling framework is drawn from the distributionally-robust
optimization literature (e.g., Goh and Sim, 2010).

We begin with the following model of uncertainty. Let λp be given by
a linear function of a number of mutually independent random factors,
z̃l, l = 1, ..., L, known as the primitive uncertainties, i.e.,

λp =
L∑
l=1

λ̂plz̃l, (5.8)

where λ̂pl, l = 0, ..., L are known constants. Furthermore, we assume that
the precise distribution of z̃ = (z̃1, ..., z̃L) is not known; instead, only the
means, supports, and variances of z̃l, l = 1, · · · , L are given. The family
of possible joint distributions with the given descriptive statistics is given
by F, which is assumed to be non-empty. These primitive uncertainties
can represent factors such as regional EV adoption factors, path specific
flow rates, etc. One may estimate these descriptive statistics based on
data from household travel surveys, pilot studies, expert judgment, or
a combination thereof. The distributionally-robust optimization frame-
work allows for ambiguity in the specification of random parameters
z̃, by optimizing over the worst expectation (or probability) over the
family F. One advantage of employing this framework is the less onerous
data burden on estimating these descriptive statistics compared with
fitting the full distribution of uncertain parameters.

Following the distributionally-robust optimization framework, in
(5.1) and (5.5), we consider supF∈FEF [Ij(Y)] and infF∈F P (Ij(Y) ≤ gj),
respectively. For the former, Mak et al. (2013) derive the exact value
by obtaining the worst-case distribution explicitly. However, the exact
worst-case expectation is not computationally tractable when embedded
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into the optimization formulation. Therefore, they provide the following
bounds:

Proposition 5.1. [Proposition 2 of Mak et al. (2013)] Suppose λ̂pl is
nonnegative for each p ∈ P, l = 1, ..., L. Moreover, z̃l has nonnegative
support for each l = 1, ..., L. Let al = z̄l

µl
and bl = σl

µl
for l = 1, ..., L.

Let a = minl=1,...,L{al}, b = maxl=1,...,L{bl}, a′ = maxl=1,...,L{al} and
b′ = minl=1,...,L{bl}. Then, the following upper bound holds:

sup
P∈F

EP

√∑
p∈P

λpYjp

 ≤ Ψ̄

√√√√√∑
p∈P

L∑
l=1

λ̂plµlY
2
jp.

If a ≥ b2 + 1, the following lower bound holds:

sup
P∈F

EP

√∑
p∈P

λpYjp

 ≥ Ψ

√√√√√∑
p∈P

L∑
l=1

λ̂plµlY
2
jp,

where:

Ψ =
√
a− a− 1
√
a+

√
1− b2

a−1

, Ψ̄ =
√
a′ − a′ − 1

√
a′ +

√
1− b′2

L(a′−1)

.

Using the upper bound provided in Proposition 5.1, one can provide
a conservative (with respect to ambiguity in demand rates) estimate of
expected battery cost. By evaluating its value against the lower bound,
Mak et al. (2013) find that the upper bound is very tight under practical
parameter settings. Integrating this battery cost expression into [BSL],
we may replace the objective function (5.1) with

min
∑
j∈J

(fjXj + hVj)

and add the constraints

Vj ≥
∑
p∈P

L∑
l=1

tλ̂plµlYjp + Φ−1(α)Ψ̄

√√√√√∑
p∈P

L∑
l=1

tλ̂plµlY
2
jp , for each j ∈ J.

(5.9)
Note that (5.9) is in computationally-tractable SOCP form. There-

fore, if one can transform (5.5) into linear or SOCP constraints, the
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whole problem [BSL] can be transformed into a computationally-efficient
MISOCP. Mak et al. (2013) show that this indeed can be done, by mak-
ing use of the following result:

Proposition 5.2. [Proposition 4 of Mak et al. (2013)] The chance con-
straints (5.5) are equivalent to:

inf
P∈F

PP

∑
p∈P

L∑
l=1

λ̂plz̃lYjp ≤ ĝj

 ≥ 1− εg for each j ∈ J,

where ĝj =

(√
gj + Φ−1(α)2/4− Φ−1(α)/2

)2

t
is a constant. (5.10)

Proposition 5.2 transforms a chance constraint on a nonlinear ex-
pression into one on a linear expression. Then, using the results of Chen
et al. (2007), one can obtain tight, distributionally-robust bounds on
the new chance constraints (5.10) in SOCP form. Therefore, combining
Propositions 5.1 and 5.2, we can tightly approximate [BSL] in MISOCP
form. Mak et al. (2013) show that this formulation is computationally
tractable, and thereby investigate various infrastructure design ques-
tions regarding charging and battery technological development and
standardization of batteries for different car models.

The swapping station network design problem is an example of
how similar modeling approaches developed for supply chain problems
can be useful in emerging applications. In particular, the modeling of
inventory costs for swapping stations is largely analogous to that for
distribution centers discussed in earlier chapters. In the next section, we
show another example where related modeling ideas can also be helpful
in developing models for renewable energy planning as well.

5.2 Deployment of Energy Storage Devices in the Electric Grid

The generation of electricity accounts for about 1/3 of greenhouse gas
emissions in US (US Environmental Protection Agency, 2014). With
rising concerns over environmental footprint of economic activities, the
electricity sector, together with the transportation sector (Section 5.1),
are among the major domains for clean technology deployment. With
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incentives policies such as feed-in tariffs (e.g., Alizamir et al., 2016),
Cohen et al., 2015 and mandates such as renewable portfolio standards,
substantial investments in renewable generation, such as solar and wind
power, have been taking place worldwide. While these modes of power
generation produce negligible greenhouse gas emissions in operation (i.e.,
after manufacturing and installation), they suffer from the intermittent
nature of weather-dependent supply. Therefore, supply of power is highly
stochastic and difficult to be matched with the demand profile, leading
to costly operations such as curtailment of surplus supply (e.g., Wu
and Kapuscinski, 2013) and running of costly (and emission-generating)
spinning reserves to guard against low supply (e.g., Bitar et al., 2012).

In operations management, the popular strategy to help mitigate
supply-demand mismatch risks is to hold buffer inventory. In power
systems, inventory can be held using energy storage (ES) devices such
as batteries, flywheels (at smaller scale) or pumped hydroelectric stor-
age (at larger scale). ES systems are typicall very costly to install and
manage; therefore, their capacities and locations (both with respect
to physical geography and the power grid topology), as well as the
associated investments in transmission lines (i.e., connection to the
grid) must be carefully planned for. Qi et al. (2015) study the problem
of jointly planning the location and capacity of ES systems as well
as the associated transmission line design for wind power. Their op-
timization model, which we shall review in this section, incorporates
operational characteristics such as intermittence, spatial correlation and
the variability pooling effect.

Qi et al. (2015) consider a set of wind farms distributed over a
geographical region. Each wind farm generates power and is to transmit
to an assigned junction site, at which the pooled power from multiple
farms is further transmitted to a common substation. The problem is to
optimally determine (1) the wind farm to junction site assignments, (2)
the deployment (and capacities) of ES units at junction sites, and (3)
the capacities of transmission lines connecting wind farms to junction
sites, and from the latter to the substation. The objective is to minimize
the sum of investment costs for ES and transmission capacity, and the
lost revenue due to efficiency loss of charging and discharging of ES
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units and curtailment when ES units have insufficient capacity to store
or transmit generated power.

5.2.1 Uncapacitated Storage Problem

Following Qi et al. (2015), we begin the discussion by considering a
simplified problem where ES units have unlimited capacity and in which
their locations are to be optimized together with the capacities and
topology of transmission lines. We first discuss the modeling of the
operations of one single wind farm connected to an ES unit. This will
serve as a building block for the network optimization problem involving
multiple wind farms.

Consider a wind farm that produces a random amount of power2,
w̃t in period t, which is assumed to be uniformly distributed in [µ −
ρ/2, µ+ ρ/2] (following Kim and Powell (2011)). In the uncapacitated
problem, we consider relatively long planning periods, where δ is in
the order of months or a year. The generated power is transmitted
to the substation through a transmission line with capacity C. Any
surplus power that cannot be transmitted is stored in the ES unit, with
charging and discharging efficiency factors of α and β, respectively. In
this simplified model, we first assume that the ES unit has infinite
capacity. Therefore, the amount of energy loss in period t is given by
l̃t = max{(w̃t − C)(1− αβ), 0}, with expectation of:

E[l̃t] =
∫ µ+ρ/2

C
(w − C)(1− αβ)1

ρ
dw = 1− αβ

2ρ (µ+ ρ/2− C)2.

At the planning stage, the transmission capacity C is to be deter-
mined. We consider a linear cost structure where the cost to invest
in capacity C is given by qC. Then, the (annualized) investment and
energy loss (with unit cost of p) cost is given by:

2As we consider periods of equal lengths δ, we use the terms power and energy
interchangeably.
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v1(C) = pE[l̃t]/δ + qC

= p(1− αβ)
2ρδ C2 +

(
q − p(1− αβ)

ρ
(µ+ ρ/2)

)
C

+p(1− αβ)
2ρδ (µ+ ρ/2)2. (5.11)

The transmission capacity is determined to minimize v1(C), subject
to the constraint that C ≥ µ, i.e., the line must have sufficient capacity
to transmit the average power output. Then, it is straightforward to
see that the optimal capacity is given by C∗ = max{µ, µ+ ρ(1

2 − θ)},
where θ = δq

p(1−αβ) . Note that θ is a parameter that depends only on the
characteristics of the ES unit but not on the wind farm. The optimal
cost is given by:

v∗1 =
{
qµ+ ρq(1

2 −
θ
2), if θ < 1

2
qµ+ ρ q

8θ , otherwise. (5.12)

Using the above as a building block, we consider a more general
problem with multiple wind farms. Specifically, we consider the problem
of selecting among a set J of candidate junction sites to be used as
junction sites to serve a set of wind farms I. Because ES systems are
expensive, it is economical that they are deployed only in a subset of J ,
and each of them may serve multiple wind farms. That is, it is possible to
use sites in J only as junction sites without building ES units (i.e., these
sites will only re-route power to the substation without storage). Where
appropriate, we append subscripts i and j to the notation introduced
previously for the single wind farm problem to indicate the dependence
on wind farm i ∈ I and ES site j ∈ J . We use binary decision variables
Vj and Xj to indicate whether site j ∈ J is selected as a junction site
without storage (Vj = 1) or not (Vj = 0) and whether an ES system is
built at the site (Xj = 1) or not (Xj = 0). The construction costs for
the transmission line connecting site j to the substation and for the ES
unit are given by gj and hj , respectively. Furthermore, we use binary
variables Yij to indicate whether ES site j is connected to wind farm
i (Yij = 1) or not (Yij = 0). Similarly, we use Zij to indicate whether
junction site (without ES) j is connected to wind farm i. To make such
a connection in either case, a fixed cost of gij will be incurred to build
the transmission line.
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Power from wind farms connected to the same junction site j will
be pooled, and the aggregate power is modeled by the random variable
wt,j (for period t), which is assumed to follow a uniform distribution
in [µj − ρj/2, µj + ρj/2]. With multiple wind farms, it is important to
model the spatial correlation of wind power at different locations. Let
Σ be the symmetric |I| × |I| matrix, whose entries are Σik = ρiρkσik
where σik is the correlation coefficient between the outputs of wind
farms i and k3. Then, matching the first two moments, one can obtain:

µj =
∑
i∈I

µiYij

ρ2
j =

∑
i∈I

ρ2
iYij +

∑
i,k∈I,i 6=k

ρiρkσikYijYkj = Y′jΣYj

(Note that Yij = Y 2
ij).

In the single wind farm problem, we derived the optimal transmission
and curtailment costs at a storage site:

v∗j =
{
qjµj + ρjqj(1

2 −
θj
2 ), if θj < 1

2
qjµj + ρj

qj
8θj , otherwise. (5.13)

Recall that θj only depends on characteristics of site (and ES unit)
j. Thus, one can partition J into subsets J1 = {j ∈ J |θj < 1

2} and
J2 = J \ J1 before determining the assignments, i.e., the Y variables.
Therefore, the overall optimization problem can be formulated as follows:

min
∑
j∈J

[
hjXj +

∑
i∈I

gij(Yij + Zij) + gj(Xj + Vj)
]

+
∑
j∈J

[∑
i∈I

qj(µi + ρi/2)(Yij + Zij) + qj

(∑
i∈I

µiZij + 1
2 P̄j

)]

+
∑
j∈J1

[
qj
∑
i∈I

µiYij + qj(
1
2 −

θj
2 )P j

]

+
∑
j∈J2

[
qj
∑
i∈I

µiYij + qj
8θj

P j

]
(5.14)

3Notice that, because the standard deviation of w̃t,i is equal to ρi/
√

3, Σ is a
scalar multiple of the covariance matrix of the random vector {w̃t,i}.
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s.t.
√

Y′jΣYj ≤ P j for j ∈ J (5.15)√
Z′jΣZj ≤ P̄j for j ∈ J (5.16)∑

j∈J
(Yij + Zij) = 1 for i ∈ I (5.17)

Xj + Vj ≤ 1 for j ∈ J (5.18)
Yij ≤ Xj , Zij ≤ Vj for i ∈ I, j ∈ J (5.19)
Xj , Vj , Yij , Zij ∈ {0, 1} for i ∈ I, j ∈ J.

In the above, the objective function (5.14) is to minimize the invest-
ment costs for ES systems and fixed construction costs for transmission
lines (first line), the variable capacity costs for tranmission lines (second
line), and the expected energy loss from charging and curtailment (third
line). The constraints (5.15) and (5.16) ensure that the variables P j
and P̄j give the values of ρj where site j is used as a junction site with
and without ES system, respectively. Note that the objective function
is increasing in both P j and P̄j , and thus these inequality constraints
hold at equality at the optimal solution. Constraints (5.17) ensure that
each wind farm is connected to a junction site. Constraints (5.18) stipu-
late that a site can be selected as a junction site with or without ES
unit, but not both. Finally, constraints (5.19) require that a junction
site be deployed for it to serve any wind farm. Note that the overall
formulation is an MISOCP, which can be solved by commercial solvers
such as CPLEX.

5.2.2 Capacitated Storage Problem

In practice, ES units are expensive to install and thus it is typically
undesirable to over-invest in capacity. Thus, the model described in
Section 5.2.1, which assumes ample storage capacity of the ES units,
may lead to suboptimal investment strategies. Qi et al. (2015) extend
the uncapacitated model to account for ES capacity considerations. This
formulation is developed based on an upper bound (i.e., a conservative
approximation) on the expected energy overflow costs incurred when
generated power cannot be stored due to insufficient storage capacity.
Again, we first discuss the formulation based on a simple network with
a single wind farm and one ES unit.



122 Applications in Emerging Areas

When power storage is capacitated, we need to take a more refined
perspective on wind power output and charging/discharging operations.
Based on the diurnal pattern of wind speed, Qi et al. (2015) consider
refined time periods of length δb, in the order of hours. These time
intervals are chosen such that the wind intensity of different periods
can be assumed independent. Let s̃b,τ denote the amount of energy
stored in the ES unit at the end of period τ , during which w̃b,τ units of
power is produced, and S be the maximum storage capacity of the ES
unit. Similarly as before, w̃b,τ is assumed to be uniformly distributed in
[µb − ρb/2, µb + ρb/2]. Depending on the level of charge at the start of
period τ , given by s̃τ−1, the level of charge at the end of τ can be one
of the following:

1. If w̃b,τ > C, i.e., energy production exceeds transmission capacity
and excess energy needs to be stored in the ES unit, then s̃τ =
min{s̃τ + α(w̃b,τ − C), S};

2. If w̃b,τ ≤ C, i.e., energy production is short of transmission capac-
ity, and energy is discharged from the ES unit to fill the shortfall,
then s̃τ = max{s̃τ − 1

β (C − w̃b,τ ), 0}.

Therefore, s̃τ is given by a piecewise linear function of the random
variable w̃b,τ as well as s̃τ−1. Considering the difficulty to identify the
distribution of s̃τ , Qi et al. (2015) propose an upper bound on the
expected amount of power overflow, E[õτ ] = E[s̃τ + α(w̃b,τ − C)− S]+,
and thus the resulting (opportunity) cost. This bound is derived based
on the assumptions that (1) the capacity S is large relative to w̃b,τ and C
such that the P (w̃b,τ = S and w̃b,τ+1 = 0) = P (w̃b,τ = 0 and w̃b,τ+1 =
S) = 0; and (2) the density function of s̃τ , fs(s) is decreasing in s ∈ (0, S)
when C > E[w̃τ ]. Under these assumptions, Qi et al. (2015) prove that
approximating fs(·) with a uniform density, f̂s(·), over [0, S] yields a
closed form upper bound on the expected volume of power overflow.

Proposition 5.3. Assume C ≥ E[w̃b,τ ]. Then, the expected volume of
overflow are bounded above by the following:

Ef̂s [õτ ] = 5α
24S (µb + ρb/2− Cδb)2.
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Using Proposition 5.3, one can approximately solve for the op-
timal storage capacity by solving minS pEf̂s [õt] + rS, which yields
S∗(C) =

√
5pα

24rδδb (µb + ρb/2 − Cδb) and the resulting cost v2(C) =√
5prα
6δδb (µb + ρb/2−Cδb). Combining this with the transmission overflow

and construction cost v1(C) in (5.11), one can obtain the (approximate)
optimal transmission line capacity as well as the resulting costs:

v4(C) =

p(1−αβ)
2ρδ (µ+ ρ

2 − C)2 + qC +
√

5prα
6δδb (µb + ρb

2 − Cδb)

if C ∈
[
µb
δb
, µb+ρb/2δb

)
p(1−αβ)

2ρδ (µ+ ρ
2 − C)2 + qC if C ∈

[
µb+ρb/2

δb
, µ+ ρ

2

]
.

Note that v4(C) is convex in C, as it is the pointwise maximum of
two convex (quadratic) functions. Then, the optimal C∗, as well as the
resulting costs, can be obtained and expressed in closed form.

Unfortunately, this single capacitated wind farm model can not
be readily incorporated in a multiple wind farm network optimization
problem as in the uncapacitated case. This is because the value of
v4(C∗), the capacity-related costs at a junction site, is dependent on
characteristics of wind farms (unlike the case in (5.13) where θj does not
depend on characteristics of individual wind farms), while assignment
of wind farms to junction sites are determined endogenously. Therefore,
it is not possible to jointly optimize the ES system and transmission
network design directly. Qi et al. (2015) propose a heuristic based on
solving the uncapacitated problem and adjusting for ES unit capacities
subsequently. In particular, they propose first solving the uncapacitated
problem optimally. Then, for each ES site chosen in the uncapacitated
solution, one solves for the expected variable costs v4(C∗) of investing
in the optimal ES capacity, and compare the resulting costs with that
of investing in a transmission line with maximum capacity (µj + ρj/2).
The option with lower costs is selected. Their computational results
indicate that this heuristic performs very well.

A common theme exhibited in both the EV infrastructure planning
and wind power storage examples is the inherent planning uncertainty
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due to uncertain adoption of EVs or uncertain supply of wind power.
However, these examples have not touched on the idea of deferring
part of the location decisions until uncertainty is (partially) resolved by
deploying facilities in phases. The next application to be discussed in
the next section explores this possibility in the retail context.

5.3 Retail Expansion with Demand Learning

The supply chain design problems discussed so far involves the location
of back-end or support facilities such as warehouses and DCs. On
the other hand, location decisions are also crucial for the planning of
front-end facilities, such as retail stores. Locations are one of the most
influential factors in consumers’ store choice because they usually prefer
to go to the most conveniently located stores. Consequently, firms with a
well-chosen set of store locations often thrive by developing sustainable
competitiveness based on locational advantages. While the store location
decision may offer such positive contributions, it also represents great
risk since it involves a significant commitment of resources for a long
period of time. Similar to the case of back-end facilities, poor store
location decisions can negatively affect the firm’s performance for an
extended period of time due to the strategic nature of these decisions.

The risk of commitment in the retail industry intensifies where the
firm enters a new market it is less familiar with, such as a foreign
country. The inherent factors that determine demand, such as economic
conditions and consumer behaviors, may not be well known to the firm
at the stage of planning the network of stores. Typically, firms employ
pilot testing and other means for marketing research to learn the market
prior to entry. However, such studies typically do not completely resolve
the uncertainties, and thus, firms still face substantial risk of deploying
its network of stores suboptimally due to lack of complete demand
knowledge. To mitigate such risks, firms often deploy stores in multple
phases dynamically. This way, the firm learns from the operations of
stores to learn the demand characteristics in earlier phases, and uses
such knowledge to make better plans in later phases.

Interestingly, in practice, we observe that firms exhibit varying
degrees of aggresiveness as to how quickly stores are deployed over time.
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For example, Apple chose to expand cautiously in China because of
the high uncertainty due to the already existing competitors (such as
Lenovo and HP) and local copycat manufacturers (Wall Street Journal,
2011a). Since opening the first store in 2008, it has only recently added
two new stores in 2011. In contrast, CVS Pharmacy is expanding
aggressively in the Puerto Rican market, opening its first 9 stores all
in 2010 (Providence Business News, 2010) and scheduled to open 13
additional stores by the end of 2012 (Puerto Rico Daily Sun, 2011).

In this section, we consider the retail store location problem where
the uncertain market characteristic can be learned from store operations
over time. The objective is to study how the firm should optimally devise
its store deployment and expansion strategy taking into account such
learning opportunities. The fundamental trade-off in designing the
optimal expansion path is one between active learning and deferred
commitment. In particular, should the firm deploy more stores at the
early stage in order to learn the market faster, or should it defer a large
portion of its investments until late stages when demand becomes more
certain, so as to avoid the risk of making overly-aggressive investments?
The choice between these strategies carries profound effects on the firm’s
long-term performance.

We adapt a model proposed by Bhatti et al. (2015), which focuses on
an alternative fuel station service network planning problem, to consider
the case of general retail network planning. This multiple-stage model
captures the uncertainty of demand and the market learning effect. We
consider the consumer adoption rate of the market to be uncertain,
but can be learned over time. In each stage, we assume that the firm
acquires more information on the adoption rate and has the option
to locate additional facilities. To reflect the trade-off between active
learning and deferred commitment, we let the amount of information
acquired to be endogenously determined as a function of firm’s action
in the previous stages. Therefore, the firm can choose to either shorten
the market learning time by aggressively investing upfront or defer the
commitment at the cost of slowing down market learning.
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5.3.1 Dynamic Retail Location Model with Demand Learning

We consider a market modeled as a network G(V,A) with the set of
vertices V and the set of arcs A. Let V = {I ∪J} where I = {1, · · · ,m}
is the set of demand points and J = {1, · · · , n} is the set of candidate
facility locations for stores. In each demand node i, we assume hi
number of potential consumers live. To capture the uncertainty in
consumer adoption, we introduce a random variable θ and refer this
to consumer adoption rate, assumed to be identical across the network
of the target market (i.e., independent of i). We further assume each
consumer adoption yields one demand per unit time. Therefore, θhi is
the product demand per unit time in each node i.

In the retail context, the covering objective can be used to model
the relationship between the firm’s location choice and consumers’
decision to patronize stores, which determines demand. In particular,
the tendency of consumers to patronize a store (i.e., demand coverage of
the store) is decreasing in the distance between the demand node and the
store. For a demand node i ∈ I, we consider a fraction of gi(d) ∈ [0, 1]
of demand to be covered by its closest store located d units of distance
from it. Similar to Berman and Krass (2002) and Berman et al. (2003),
we consider the coverage function gi(d) to be non-increasing and convex,
with gi(0) = 1 for all i ∈ I. Then, with the set of open stores indicated
by decision variables X, we can express the effective demand covered
at node i by θhigi(di(X)) where di(X) = minj∈X d(i, j), which is the
distance from the nearest opened store to i. Denoting the revenue per
unit demand per unit time by r, the total revenue per unit time is∑
i∈I rθhigi(di(X)). We consider an infinite time horizon over which

the discount rate α is applied.
We consider two decision epochs in the model. In the first, the firm

selects a set of store locations (indicated by X1) before learning the
consumer adoption rate. Therefore, θ is known to be following a certain
probability distribution. Upon deploying the set of stores, the firm
accumulates demand knowledge through operating these stores. After a
time of T , referred to as the market learning time, the uncertainty is
resolved and the value of θ is known to the firm precisely. Then, the firm
determines another set of additional stores (indicated by X2) to locate,
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and the retail network is operated over an (discounted) infinite horizon.
It is further assumed that stores opened in the first phase cannot be
closed or moved in the second phase, due to the high cost of doing so in
practice. The key feature of the model is the endogenous learning time
T , which is modeled as a function of first-stage decision X1. Bhatti
et al. (2015) consider the learning time as a function of first-stage
demand coverage, defined as c(X1) =

∑
i∈I higi(d(X1)); particularly,

they consider T = φ(c(X1)) > 0 where φ(·) is a decreasing function.
This setup captures the relationship that if more consumers are covered
in the first stage, the market is learned at a faster rate. The two-stage
decision model can be formulated as:

max
X1⊂J

{
Eθ

[∫ T

0
e−αt

(∑
i∈I

rθhigi(di(X1))− f(X1)
)
dt+

+e−αTV (X2;X1, θ)
]}

(5.20)

where V (X2;X1, θ) is the optimal objective value of:

max
X2⊂J\X1

{∫ ∞
T

e−αt
(∑
i∈I

rθhigi(di(X1 ∪X2))− f(X1 ∪X2)
)
dt

}
.

(5.21)
It is possible to re-express the above with a more compact formula-

tion for the two-stage retail location problem with learning [TRLP-L]:

[TRLP-L] : max
X1⊂J

X2⊂J\X1

1
α

{
Eθ

[
(1− e−αT )

∑
i∈I

rθhigi(di(X1))− f(X1)

+e−αT
(∑
i∈I

rθhigi(di(X1 ∪X2))− f(X2)
)]}

. (5.22)

5.3.2 Solution Approach

Using the standard scenario-based formulation in two-stage stochastic
programming, Bhatti et al. (2015) assume θ to be a discrete random
variable with a set S of possible realizations (scenarios), each with
probability ps where

∑
s∈S p

s = 1. Then, [TRLP-L] can be reformulated
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explicitly as:

[P1] : max
X,Y,T

∑
s∈S

ps

α

(1− e−αT )∑
i∈I

∑
j∈J

rθshigi(dij)Y 1
ij −

∑
j∈J

fjX
1
j

+e−αT
[∑
i∈I

∑
j∈J

rθshigi(dij)Y 2
ijs −

∑
j∈J

fjX
2
js

] (5.23)

s.t. Y 1
ij ≤ X1

j , Y 2
ijs ≤ X1

j +X2
js for i ∈ I, j ∈ J, s ∈ S (5.24)∑

j∈J
Y 1
ij = 1,

∑
j∈J

Y 2
ijs = 1 for i ∈ I, s ∈ S (5.25)

X1
j +X2

js ≤ 1 for j ∈ J for s ∈ S (5.26)

T ≥ φ
(∑
i∈I

∑
j∈J

higi(dij)Y 1
ij

)
(5.27)

T ≥ 0, X1
j , X

2
js, Y

1
ij , Y

2
ijs ∈ {0, 1} for i ∈ I, ∀j ∈ J, ∀s ∈ S.

The first and second lines of objective function (5.23) represent the
time-discounted profit accumulated over the first and second stage, i.e.,
for the time intervals [0, T ] and (T,∞), respectively. These consist of the
operational revenue, less the cost of locating the sets of stores indicated
by X1 and X2. The constraints (5.24) ensure that a facility must be
opened if it is used to cover any customers. Constraints (5.25) stipulate
that each customer location must be covered by one facility in each
stage. Note that, if a demand node is too far from the facility covering
it, the level of coverage can be zero. Constraints (5.26) make sure that
a store is opened in at most one stage. Constraint (5.27), which we
refer to as the coverage constraint, relate the learning time T with the
first-stage coverage c(X1, Y 1) =

∑
i∈I
∑
j∈J higi(dij)Y 1

ij .
The above formulation is a mixed integer nonlinear program. The

major solution difficulty comes from the nonlinear (exponential) terms
in the objective and the coverage constraint, which imposes the (gener-
ally nonlinear) relationship between the auxiliary variable T and the
location and coverage variables (X1, Y 1). Bhatti et al. (2015) propose a
linearization-bounding procedure to solve the problem tractably while
providing a performance bound. We outline the procedure below. For no-
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tational brevity, we temporarily denote the first-stage demand coverage
by just c and rewrite the coverage constraint as T = φ(c). First, we note
that c will be bounded in the interval [c, c̄] at the optimal solution. In
particular, the upper bound c̄ is the coverage corresponding to opening
all stores in the first stage. The lower bound c can be obtained by first
solving the deterministic counterpart of the problem where θ is fixed to
the value θs for each scenario s ∈ S, and identifying the coverage level
corresponding to opening set of common stores opened in all scenarios.

To linearize the formulation, we introduce another auxiliary decision
variable W = e−αT . Then, one can observe that W is increasing in
the coverage level c and replace the coverage constraint (5.27) with
W − e−αφ(c) ≤ 0. Since the left hand side expression is nonlinear (and
not necessarily convex), one may approximate the exponential term
with a piecewise linear function of c, denoted by Ŵ (c), as follows. In
particular, we partition the interval [c, c̄] into K non-overlapping sub-
intervals at break points ck and ck. Then, within each interval, we use
the linear function Ŵk(c) = ak + bkc to approxmate the term e−αφ(c),
while ensuring that 0 ≤ e−αφ(c)−Ŵk

e−αφ(c) ≤ ε for all c ∈ [ck, c̄k] where ε is
a precribed tolerance level. Note that, as long as the term e−αφ(c) is
continuous, an arbitrarily large tolerance level ε can be accommodated
by increasing K, i.e., using more refined linear pieces to approximate
the function. Furthermore, the piecewise linear function Ŵ (c) is chosen
such that it bounds the original expression from above, such that the
approximation yields a conservative estimate of the overall objective
value.

The key feature of this approximation scheme is that one can con-
sider the k sub-intervals separately. In particular, one can impose the
constraint ck ≤ c ≤ c̄k and solve the K resulting subproblems indepen-
dently. Let the optimal objective value for the k-th subproblem be Π̂k,
which corresponds to the optimal profit while restricting the first-stage
coverage to the interval [ck, c̄k] (note that this can be negative if the
subproblem is infeasible). The subproblem to be solved to obtain Πk is
formulated as follows.
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Πk= max
X,Y,Ŵ

∑
s∈S

ps

α

(1− Ŵ )∑
i∈I

∑
j∈J

rθshigi(dij)Y 1
ij −

∑
j∈J

fjX
1
j(5.28)

+Ŵ
[∑
i∈I

∑
j∈J

rθshigi(dij)Y 2
ijs −

∑
j∈J

fjX
2
js

]
s.t. Y 1

ij ≤ X1
j , Y 2

ijs ≤ X1
j +X2

js for i ∈ I, j ∈ J, s ∈ S∑
j∈J

Y 1
ij = 1,

∑
j∈J

Y 2
ijs = 1 for i ∈ I, s ∈ S

X1
j +X2

js ≤ 1 for j ∈ J, s ∈ S

Ŵ = ak + bkck

ck =
∑
i∈I

∑
j∈J

higi(dij)Y 1
ij

ck ∈ [ck, c̄k], X1
j , X

2
js, Y

1
ij , Y

2
ijs ∈ {0, 1} (5.29)

for i ∈ I, j ∈ J, s ∈ S.

Note that the objective function (5.28) still contains nonlinear terms
as products of the variables Y 1

ij and Y 2
ij , and Ŵ . These terms can be

linearized using the standard procedure (e.g., Oral and Kettani, 1992)
by observing that Y 1

ij and Y 2
ij are binary variables. Then, the final

solution can be selected by taking the maximum of optimal profits in
these subproblems, i.e., Π̂ = maxk=1,··· ,K Π̂k. Bhatti et al. (2015) prove
the following result regarding the accuracy of such approximation.

Proposition 5.4. Let Π denote the optimal profit for problem [P1].
Then, Π̂ ≤ Π and Π−Π̂

Π ≤ ε.

Proposition 5.4 states that the approximate profit obtained from
the linearization approximation provides a lower bound on the true
optimal profit, and the error can be made arbitrarily small by using
more refined approximations (i.e., a larger K). The key advantage of
this procedure is that the number of subproblems to solve increases
linearly in K, and thus the computation times only mildly increases in
the degree of approximation accuracy.

All of the applications discussed thus far have focused on the plan-
ning of for-profit facility networks. As a result, the objectives typically
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involve maximizing profits or minimizing costs. The next application to
be discussed provides an example of how design of public services may
require different modeling considerations regarding both the planning
objective and performance requirements.

5.4 Planning for Trauma Centers for Emergency Medical Services

In health care, the location of facilities is crucial to ensuring accessibility
of service and cost efficiency. Moreover, the negative consequences of
ill-informed facility location decisions in health care settings can extend
beyond service quality and costs, leading to mortality and morbidity
(Daskin and Dean, 2004). Among health care systems, emergency ser-
vices are particularly reliant on careful location planning to perform
their function, due to the high time sensitivity in demand. The US
EMS (Emergency Medical Services) Act of 1973 requires that 95% of
emergency service requests to be served within 30 minutes in rural areas
and 10 minutes in urban areas Daskin and Dean (2004). In light of
response time constraints, researchers have been working on location
models for EMS based on covering distance models since the 1970’s. For
example, Toregas et al. (1971) and Church and Velle (1974) use the set
covering and max covering models (discussed in Chapter 1) to study the
problem of locating ambulances to cover EMS requests, respectively.

Response time in EMS is determined by not only travel distances,
but also availability of ambulances. In particular, an ambulance may
be unavailable upon request due to serving a prior request. To capture
this, researchers have extended the covering models to incorporate
the availability condition of ambulances. For example, Daskin (1983)
formulates the maximum expected covering model, generalizing the
max covering model to incorporate the objective of maximizing the
expected number of available ambulances that can cover a demand
node, assuming that each ambulance has a certain probability of being
unavailable (busy). Eaton et al. (1985) report the implementation of such
modeling in practice in Austin, TX. ReVelle and Hogan (1989) consider
a chance-constrained problem in which the demand coverage within
a prescribed time limit with a given probability is to be maximized.
Marianov and ReVelle (1996) consider a queueing-based model that
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relaxes the (strong) assumption that availability probabilities do not
depend on facility siting decisions. Models for EMS facility location
(see, for example, Brotcorne et al. (2003) for a review) involving busy
ambulances (or servers) are often difficult to formulate or analyze
due to the challenge of characterizing busy probabilities, which may
endogenously depend on the choice of facilities. This challenge is much
akin to the class of integrated facility location models discussed thus far.

With recent developments in theoretical and computational aspects
of nonlinear integer optimization, it is now possible to tackle more
complex EMS location planning problems driven by recent applications.
Motivated by a EMS planning case in Korea, Cho et al. (2014) study a
problem of simultaneously locating trauma centers (that treat emergency
trauma patients) and helicopters. Similar to the case in prior models
for ambulances, the modeling approach requires characterizing the busy
probabilities of helicopters. An additional challenge is that the busy
probabilities depend on the locations of both types of facilities with
interacting operations. In particular, while the two types of facilities
are complements (as helicopters transport patients to trauma centers)
in operations, they also interact somewhat as substitutes as a demand
location can be covered either directly by a trauma center (using ground
ambulances) or by helicopters. We review the model formulation and
solution approach in this section.

5.4.1 Location Model for Trauma Centers and Helicopters

Cho et al. (2014) consider the problem of locating K trauma centers
and M heliports (helicopter depots) out of candidate sets J and H,
respectively, to serve a set I of demand locations. The two types of
facilities can be co-located, i.e., a heliport can be built on the roof of a
trauma center or at a separate site and H ⊇ J . Each heliport (if located)
is equipped with one helicopter. Demand occurs (independently) at
each demand location i ∈ I following a Poisson process with a rate of
λi, and in such case, the patient is to be transported from i to one of
the trauma centers, either using a ground ambulance or a helicopter.

To comply with response time regulations, sufficient trauma centers
must be located such that patients can be transported to one of them
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within 60 minutes upon demand occurence. This time-based requirement
can be converted to distance-based requirements for the two modes
(ground ambulance and helicopter) as follows. For ground ambulances,
it is required that the road distance from the nearest ambulance station
(the location of which is assumed to be known and fixed) to demand
location i, dri , plus the road distance from i to trauma center j, drij , must
satisfy dri + drij ≤ d̄r. For helicopters, it is required that the Euclidean
distance from the assigned heliport h to i, dhi, and that from i to the
nearest trauma center j, dij , satisfy dhi + dij ≤ d̄. Note that while
helicopters travel in straight line (thus the consideration of Euclidean
distances), ambulances travel on ground along the road network. The
values of d̄g and d̄ are determined based on the average operating speeds
and loading times for ambulances and helicopters, respectively. For
notational brevity, define

• F r = {(i, j)|i ∈ I, j ∈ J, dri + drij ≤ d̄r}, i.e., the set of demand
location-trauma center pairs that satisfy the ground ambulance
response time limit;

• F ri = {j ∈ J |dri + drij ≤ d̄r}, i.e., the set of trauma centers
that patients can be transported to within the time limit using
ambulances;

• F rj = {i ∈ I|dri + drij ≤ d̄r}, i.e., the set of demand locations that
a trauma center can serve using ambulances;

• F = {(i, j, h)|i ∈ I, j ∈ J, h ∈ H, dhi + dij ≤ d̄}, i.e., the set of
possible demand location-trauma center-heliport triplets where
patients can be transported to the trauma center using helicopters
within the time limit;

• Fh = {(i, j)|i ∈ I, j ∈ J, dhi + dij ≤ d̄}, i.e., the set of demand
location-trauma center pairs that can be served by heliport h;

• Fi = {(j, h)|j ∈ J, h ∈ H, dhi + dij ≤ d̄}, i.e., the set of trauma
center-heliport pairs that can jointly serve by demand location i;

• Fj = {(i, h)|i ∈ I, h ∈ H, dhi + dij ≤ d̄}, i.e., the set of demand
location-heliport pairs that can be served using trauma center j.
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Let τijh be the average time for a transportation and service cycle
for a helicopter to travel from heliport h to retrieve a patient at i,
transport him/her to trauma center j, and return to heliport h. Define
Xj (Wh) as the binary decision variable indicating whether a trauma
center (a heliport) is located at j ∈ J (h ∈ H). Also, define Y r

ij and Yijh
be the continuous decision variables representing the average rates of
patients transported from demand location i ∈ I to trauma center j ∈ J
using ground ambulances and using a helicopter stationed at h ∈ H,
respectively. Furthermore, we define the following auxilliary variables:

λr =
∑
i∈I

∑
j∈F ri

Y r
ij (5.30)

λh =
∑

(i,j)∈Fh

Yijh for h ∈ H (5.31)

λj =
∑
i∈F ri

Y r
ij +

∑
(i,h)∈Fj

Yijh for j ∈ J (5.32)

rh =
∑

(i,j)∈Fh

τijhYijh for h ∈ H. (5.33)

These auxilliary variables represent the total demand rate handled by
ground ambulances, demand rate handled by heliport h, demand rate
handled by trauma center j, and workload assigned to h, respectively.

Note that the above only specifies geographical coverage based on
distance. Geographical coverage is only a necessary condition and is
not sufficient for guaranteeing service without considering availability
of helicopters. Between the two transportation modes, Cho et al. (2014)
find that helicopters are typically the scarce resource in practice, and
thus assume that there are ample ambulances available. To capture
stochasticity in helicopter service, Cho et al. (2014) consider the expected
demand coverage (a performance measure in line with Daskin (1983),
for example) under random (Poisson) demand arrivals. In particular,
with (Poisson) demand arrival rate of λh and workload of rh, one can
view the heliport h approximately as a single-server queue with average
service time τh = rh/λh, by assuming that demand requests finding the
helicopter busy will join a queue instead of being lost (or re-routed).
The busy probability is thus rh, and the expected demand covered by
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heliport h per unit time is thus λh(1− rh). The objective is to maximize
the total expected demand coverage by all heliports and trauma centers,
given by

∑
h∈H λh(1− rh) + λr.

Another important aspect of service quality is the waiting time
for service at trauma centers. Cho et al. (2014) formulate a capacity
constraint that limits λj by a limit µjρω,ξj where ρω,ξj is the maximum
workload that can be assigned to a M/M/k queueing system (repre-
senting the congested trauma center) such that the waiting time does
not exceed threshold ω with a probability guarantee of ξ.

Combining the above considerations, the joint location problem for
trauma centers and heliports can be formulated as the following mixed
integer nonlinear program:

max λr +
∑
h∈H

(1− rh)λh = λr +
∑
h∈H

λh − λhrh (5.34)

s.t. (5.30− 5.33) (5.35)
Wj ≤ Xj for j ∈ J (5.36)∑
j∈J

Xj ≤ K (5.37)

∑
h∈H

Wh ≤M (5.38)

∑
j∈F ri

Y r
ij +

∑
(j,h)∈Fi

Yijh ≤ λi for i ∈ I (5.39)

λj ≤ µjρω,ξj Xj for j ∈ J (5.40)
rh ≤Wh for h ∈ H (5.41)
0 ≤ Y r

ij ≤ λiXj for (i, j) ∈ F r (5.42)
0 ≤ Yijh ≤ Xj for (i, j, h) ∈ F (5.43)
Xj ∈ {0, 1} for j ∈ J
Wh ∈ {0, 1} for h ∈ H.

In the model, the objective (5.34) is to maximize expected demand
coverage by all heliports and trauma centers (via ground ambulances).
The constraints (5.36), (5.37) and (5.38) ensure that a heliport cannot be
located at a trauma center site if the trauma center is not located, and
that K trauma centers andM heliports are located in total, respectively.
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Constraints (5.39) require that the demand coverage cannot exceed total
demand arrivals. Constraints (5.40) impose the capacity limit on demand
assignment to trauma centers such that their waiting times satisfy the
probabilistic guarantee as discussed above. Finally, constraints (5.41),
(5.42) and (5.43) stipulate that demand cannot be assigned to a facility
of either type if said facility is not opened.

5.4.2 Solution Approach

The main challenge in solving the problem lies in that the objective
function (5.34) carries the nonlinear terms wh = λhrh, which are neither
convex nor concave. Cho et al. (2014) propose a linearization-bounding
approach for solving the problem. To begin, note that it is possible
to obtain a relaxation by using the McCormick envelope inequalities
(McCormick, 1976):

wh ≥ λ̄hrh + r̄hλh − λ̄hr̄h (5.44)
wh ≥ λhrh + rhλh − λhrh (5.45)
wh ≤ λ̄hrh + rhλh − λ̄hrh (5.46)
wh ≤ λhrh + r̄hλh − λhr̄h (5.47)

where r̄h, rh, λ̄h, λh are upper and lower bounds on the possible values of
rh and λh, respectively. These inequalities bound the bilinear function
from below (5.44-5.45) and above (5.46-5.47). Because the λhrh terms
are to be minimized in the objective, we only need to impose the lower
bounds (5.44-5.45) in the formulation. Moreover, observing that the
lower bounds on rh and λh are given by zero, (5.45) simply becomes
wh ≥ 0. Therefore, one can obtain a relaxation of the problem (5.34)
by replacing the objective with:

max λr +
∑
h∈H

(λh − wh) (5.48)

s.t. wh ≥ λ̄hrh + r̄hλh − λ̄hr̄h for h ∈ H
wh ≥ 0 for h ∈ H.

Unfortunately, this linear relaxation turns out to be relatively weak.
To improve the relaxation strength, (Cho et al., 2014) propose to use
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quadratic bounds instead of linear ones. In particular, they observe that
τh = rh/λh is the average service time of heliport h, which implies that
rhλh = τhλ

2
h. Then, given lower and upper bounds τh and τ̄h on τh, one

can identify quadratic bounds on wh in the form of τhλ2
h ≤ wh ≤ τ̄hλ2

h.
Again, as wh is to be minimized, only the first inequality, which is
convex, is needed. This leads to a relaxation of (5.34) in the form of a
mixed integer quadratic program. Note that, because τh is a weighted
average of τijh, one can let τ̄h = maxi,j τijh and τh = mini,j τijh. Cho
et al. (2014) observe that the resulting quadratic lower bound is typically
tighter than the linear McCormick bounds, especially at lower values of
λh.

To further tighten the bound, one can observe that, for any fixed τ̂h
that bounds the value of τh under the optimal solution, it holds that
τ̂h and τ̂hλ

2
h provide valid lower bounds on the optimal values of rh

and wh, respectively. To tighten the bound, one can divide the interval
[λh, λ̄h] (not necessarily uniformly) into N subintervals [τh,n, τh,n+1] for
n = 1, · · · , Nh. Then, for any feasible solution, the value of τh = rh/λh
will fall into exactly one of these intervals. Define new binary indicator
variables zhn which takes the value of one if the value of τh falls in
the interval [τh,n, τh,n+1], and zero otherwise, which can be imposed by
adding the following logical constraints:

λh =
Nh∑
n=1

λhn, rh =
Nh∑
n=1

rhn for h ∈ H (5.49)

0 ≤ λhn ≤ λ̄hzhn for n = 1 · · · , Nh, h ∈ H (5.50)
0 ≤ rhn ≤ r̄hzhn for n = 1 · · · , Nh, h ∈ H (5.51)
τh,nλhn ≤ rhn ≤ τh,n+1λhn for n = 1, · · · , Nh, h ∈ H (5.52)
Nh∑
n=1

xhn = 1 for h ∈ H (5.53)

xhn ∈ {0, 1} for n = 1, · · · , Nh, h ∈ H.

The above logical constraints form a multiple choice characterization
that imposes one out of N possible lower bounds on each wh term. In
particular, (5.49) specify that the values of λh and rh will be given by
one of the λhn and rhn values for the appropriate n. Constraints (5.50,
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5.51) ensure that only the λhn and rhn for the appropriate n will have
a non-zero value. Constraints (5.52) make sure that the appropriate
n be selected when rh is given by τ̂hλh for some τ̂h ∈ [τh,n, τh,n+1].
Finally, constraints (5.53) specify that one such interval be selected.
With these logical constraints, the

∑
h∈H wh terms in objective (5.48)

can be replaced with
∑
h∈H

∑N
n=1 τh,nλ

2
hn.

It is obvious that the tightness of the resulting lower bound ob-
tained from this multiple choice formulation depends on how finely
the intervals [τh,n, τh,n+1] are partitioned. Generally, a finer partition
(loosely speaking, larger Nh) would lead to a better (more accurate)
bound, while increase problem size and computation times. To obtain
a good trade-off between accuracy and computation speed, Cho et al.
(2014) propose a shifting quadratic envelopes algorithm, which solves
the problem iteratively while updating the partitions. In the first iter-
ation, Nh = 1 for all h ∈ H. Then, in each subsequent iteration, the
interval in which the optimal λh lies is bisected evenly for each h ∈ H.
The motivation is to start with a small number of intervals (and thus
a modest-sized formulation) and refine the partition near the region
where the true optimal value of λh is expected to lie in. Furthermore,
to limit the problem size from increasing too much, the intervals that
have low likelihood of containing the optimal values can be merged.
Cho et al. (2014) find that, from a practical point of view, keeping three
intervals below and one above the current λh solution provides a good
trade-off between solution quality and computation speed.

Another aspect of the solution algorithm is to obtain feasible solu-
tions (and associated upper bounds on the optimal objective value) based
on the lower bound solutions. Cho et al. (2014) do so by solving a re-
stricted version of the problem by fixing the variables (Xj ,Wh, λ

r, λh, Y
r
ij)

based on their values in the lower bound solution and resolving for the
remaining variables (Yijh, rh). Note that the resulting problem, which
determines the assignment of demand to heliports and determines the
corresponding workload, is a linear program and can be solved effi-
ciently. Combining these procedures, Cho et al. (2014) report that the
overall algorithm performs very well computationally, compared with a
Bender’s decomposition benchmark.
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5.5 Discussion

The scope of facility location problems has, in recent years, expanded
well beyond the conventional supply chain domain. The studies reviewed
in this section have covered emerging domain areas of sustainable trans-
portation, renewable energy, retail, and health care. While these domain
areas are seeing growing interest in the discipline of operations manage-
ment in general, unique opportunities exist for researchers specialized in
location modeling because of the strategic implications of spatial consid-
erations in these potentially high-impact problems. For example, using
a network design model calibrated to real data, Deo et al. (2015) reveal
that redesigning the supply chain for infant HIV diagnosis could signifi-
cantly improve the number of infected infants receiving treatments. We
believe that further research along these lines can complement existing
research focusing on other operations questions (e.g., capacity planning
for renewable generation and storage). Particularly, incorporating the
spatial factor in the former can enhance the breadth of analysis of the
latter, such as the charging network analysis in the study of range and
resale anxiety for EV adoption in Lim et al. (2016); the findings in the
latter could also be used to capture various operational characteristics
in building new models for the former.



6
Conclusion and Future Directions

Recent advances in optimization, particularly in the study of nonlinear,
stochastic and robust integer problems, have greatly enhanced the
expanded the scope of tractable problems and enabled rich problem
features to be built into facility location models. This has allowed
researchers and practitioners to enhance the classical facility location
models by incorporating problem-specific facility characteristics into
their models and obtain richer insights into location planning problems
in practice. In this monograph, we have provided an introduction to
this integrated modeling approach to facility location and a brief review
of the vast and growing literature.

We believe that research in this area will continue to grow in the
future. Particularly promising are new applications in supply chain
planning and other emerging operations areas. In the supply chain
domain, existing research (including the papers we have reviewed) has
mainly focused on the planning of back-end distribution and storage
facilities (i.e., DCs and warehouses). Recent developments in the in-
dustry, however, have made it interesting to consider the front-end
aspects as well. We have discussed in Section 4.5 and 4.6 distribution
networks for online retailers exhibit different characteristics than tra-
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ditional brick-and-mortar ones. The emerging segments of rapid (e.g.,
same-day) delivery and online-to-offline (O2O) shopping in online retail
have resulted in interesting new operations modes as well as business
models that motivate novel research questions. For example, new busi-
nesses such as Google Shopping Express, Curbside and Instacart have
been established to facilitate the new fulfillment needs and opportunities
arising from the new trend. These new business (and operations) models
exhibit very different characteristics compared with their conventional
counterparts, and potentially provide many novel research questions
regarding optimal distribution network planning that may be tackled
with new classes of facility location modeling. Overall, we believe the
rise of digital and information-driven supply chain operations will bring
about tremendous research opportunities.

Intriguing developments exist in other domain areas as well. For
example, sustainable transportation has become a focus of development
of smart cities. This development also gives rise to interesting spatial
network planning problems to be tackled with integrated facility loca-
tion approaches. For example, He et al. (2016) and Kabra et al. (2015)
study planning problems for car sharing and bike sharing problems,
respectively. In both cases, service provision (the coverage of service
regions and locations of bike stations) is to be optimized with consider-
ation of service availability (having large enough fleets of cars and bikes
to ensure availability). Likewise, in both the energy and health care
sectors, high-impact network planning problems remain to be tackled
with advanced modeling approaches.

We believe these are just a few of the many promising directions in
which the literature will extend. We hope the review and discussion pro-
vided in this monograph may serve as a useful reference for researchers
and practitioners in making their contributions to this growing research
stream.
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