
Ann Oper Res
DOI 10.1007/s10479-014-1530-9

Alternative fuel station location model with demand
learning

Shahzad F. Bhatti · Michael K. Lim · Ho-Yin Mak

© US Government 2014

Abstract In this paper, we study the optimal location decision for a network of alternative
fuel stations (AFS) servicing a new market where the demand rate for the refueling service
can be learned over time. In the presence of demand learning, the firm needs to make a
decision, whether to actively learn the market through a greater initial investment in the
AFS network or defer the commitment since an overly-aggressive investment often results
in sub-optimal AFS locations. To illustrate this trade-off, we introduce a two-stage location
model, in which the service provider enters the market by deploying a set of stations in the
first stage under uncertainty, and has the option to add more stations in the second stage after
it learns the demand. The demand learning time (length of the first stage) is endogenously
determined by the service provider’s action in the first stage. To solve this problem, we
develop an efficient solution method that provides a framework to achieve a desired error
rate of accuracy in the optimal solution. Using numerical experiment, we study the trade-
off between active learning and deferred commitment in AFS deployment strategy under
different market characteristics. Further, we find that the lack of planning foresight typically
results in an over-commitment in facility investment while the service provider earns a lower
expected profit.
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1 Introduction

Alternative fuel vehicles (AFVs) are vehicles that run on fuels derived from sources other
than petroleum (petrol or diesel); examples include electric, hydrogen, and bio-diesel
vehicles. With growing concerns over energy security (resulting from rapidly increas-
ing/fluctuating oil prices) and environmental issues (such as CO2 emissions and air pol-
lution), AFVs have become a high priority for many governments and car manufacturers
around the world in search for cleaner transportation solutions. However, adoption of AFVs
often suffers from the lack of supporting infrastructure, in particular, alternative fuel sta-
tions (AFS) at which AFV can be refueled. To support mass adoption of AFVs, the AFS
infrastructure must be deployed optimally and economically, to ensure extensive geograph-
ical coverage and convenience to drivers, while keeping operating costs low enough to be
competitive with existing gasoline counterparts. In this paper, we consider the problem of
optimally deploying a network of AFS to service a growing AFV market.

In deploying the AFS infrastructure, facility location decision (number and locations of
the stations) is one of the most important factors because the locational convenience (i.e.,
distance) to the potential AFV buyers plays a big role in the adoption process. While the
location decision represents great opportunity for the refueling service providers, it also
implies great risk since it involves a significant commitment of resources for a long period
of time. When the firm decides to open a new station, it has to make a substantial initial
investment; either buy and develop the real estate or commit to a long-term lease typically
ranging from 5 to 20 years (Levy and Weitz 2008). Thus, unlike poor pricing or operational
decisions, poor location decisions negatively affect the firm for an extended period of time.

The risk of commitment in capital-intensive AFS business increases even further when it
comes to entering a new market with high uncertainties. The firm may face various sources
of uncertainties resulting from local economy and/or consumer behaviors that affects the
AFV adoption as well as the resulting demand for AFS service. Although the service
provider can conduct market research (such as pilot testing or market surveys) to reduce
such uncertainties, it is difficult to fully understand the usage behavior of potential AFV
drivers without actually operating the AFS. Hence, the service providers deploy AFS in a
dynamic fashion as they learn the demand over time. Interestingly, in practice, we observe
that different firms adopt different market entry approaches and, accordingly, the resulting
AFS deployment decisions vary significantly. For example, Tesla chose to slowly expand
its network of AFS (i.e., superchargers for its electric vehicles), because of the high uncer-
tainty in the mass-market demand, only operating 8 stations across the nation (CNN 2013).
Its strategy is to plan for expansion after learning about the purchasing and usage patterns
more closely after the initial introduction stage (MIT Technology Review 2013). In contrast,
before fully learning the demand, Better Place decided to make a significant initial capital
commitment to roll out nation-wide battery switching station networks in full scale for its
electric vehicle drivers in Israel and Denmark (Jerusalem Post 2011).

In this paper, we consider the AFS location problem where the uncertain market charac-
teristic can be learned over time. In particular, we study the service provider’s optimal station
location decision in which the time to learn the AFV refuel service demand rate depends on
the firm’s initial station location decision. With the option to defer part of investments un-
til fully learning the service demand, the firm needs to make an AFS deployment decision.
That is, should the firm actively learn the market through a greater initial investment (e.g.,
open more stations), since service demand data can be collected at a faster rate? Or should
the firm defer the commitment since an overly-aggressive investment often results in sub-
optimal locations, which will adversely affect its performance in the long run. The primary
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objective of this study is to understand optimal location decision in the presence of such
demand learning trade-off.

To this end, we introduce a two-stage AFS location model that captures the demand
learning effect. We consider the demand rate in the service region to be uncertain, but can
be learned during the first stage. After the first stage, we assume that the demand rate for
the AFV refueling service is fully learned and that the service provider has the option to
locate additional stations in the second stage. We let the duration of the first stage (demand
learning time) to be endogenously determined as a function of service provider’s action in the
first stage. Therefore, the service provider can choose to either shorten the demand learning
time by aggressively investing upfront or defer the commitment at the cost of delaying the
demand learning time.

The main contribution of this research is two-fold. First, we develop an efficient and
effective solution method for solving the two-stage AFS location problem with demand
learning (Sect. 4.2). The proposed solution method offers a service provider’s approximated
expected profit within the error rate of ε provided by the network designer. Also, this so-
lution method is applicable to any location problem with an endogenous learning time. We
test the algorithm on a network constructed using census data from the City of Chicago
(Sect. 4.2). Second, we derive relevant managerial insights regarding AFS location deci-
sion. We show that the firm’s optimal AFS deployment strategy depends on the speed of
the learning in the local service region (Sect. 5.1). Further, we show that lack of planning
foresight typically results in over-commitment in AFS infrastructure investment while the
firm earns a lower expected profit (Sect. 5.2).

The remainder of this paper is structured as follows. In Sect. 2, we review the related lit-
erature. In Sect. 3, we introduce the two-stage AFS location problem with demand learning.
We also specify the interesting structural properties of the problem. In Sect. 4, we develop
a solution method for the proposed problem and report the computation results. In Sect. 5,
we first study the impact of demand learning by obtaining a firm’s optimal strategy under
different market characteristics. Then, we study the value of foresight in location planning
by contrasting the optimal decision to a myopic decision. Finally, we conclude the paper by
summarizing the managerial insights and proposing directions for future research in Sect. 6.

2 Literature review

To capture the degree of refuel service demand of AFV, we employ facility location model
(see, e.g., Hale and Moberg 2003 for a review), and the coverage model in particular. Church
and ReVelle (1974) introduce the Maximal Coverage Location Problem [MCLP] which finds
the locations of a given number of facilities to maximize the total number of demands served
by the set of opened facilities. This problem assumes a binary coverage scheme; i.e., the ser-
vice is determined to be adequate if the demand is within a given distance and is considered
inadequate if the distance exceeds some critical value. Daskin (1983) extends the problem
to the “expected” covering case by taking into account the possibility of facility conges-
tion. Drezner (2009) considers the problem of locating retail stores in an uncertain market
environment to cover as much demand as possible.

As a refinement of the covering location problem, Berman and Krass (2002) consider a
generalized version of the MCLP which allows for partial coverage of consumers instead
of binary coverage. Berman et al. (2003) and Drezner et al. (2004) discuss the Gradual
Covering Location Problem [GCLP] in which the extent of demand coverage is defined
as a function of the consumer’s traveling distance. In particular, they consider the lower
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and upper thresholds in traveling distance; consumers who have a traveling distance less
than the lower threshold are fully covered whereas consumers who live farther than the
upper threshold are not covered. The coverage for consumers located in between gradually
decreases as a function of the traveling distance. Drezner et al. (2010) extend the GCLP to
the stochastic case when the upper and lower distances are random variables. We consider
a similar coverage scheme in this paper. We assume that the coverage function is a non-
increasing function of the distance between a demand node and its closest facility. For more
details on the coverage location problems, please see Jacobson (1990) (for discrete models)
and Plastria (2002) (for continuous models).

On locating the AFS network system (to maximize the coverage of its refueling service
demand), however, there has only been limited number of studies. Kuby and Lim (2005)
study a flow-refueling location problem for AFV. The main focus is to capture as much
AFV traveling paths as possible (so that vehicles can be refueled before running out of
fuel), by locating a given number of refuel stations. In Kuby and Lim (2007), the earlier
work is extended by allowing location of stations along arcs, in addition to nodes, in the
network. Upchurch et al. (2009) consider the problem incorporating limited capacity for the
refuel stations. In this paper, we consider a demand coverage model for AFS deployment
problem where the service provider wants to maximize the total coverage for its service
users (i.e., AFV owners). Similar to the coverage model proposed by Drezner et al. (2004),
we assume that the coverage function (on the amount of AFS service demand) is a non-
increasing function of the distance between a demand node and its closest facility.

Facilities typically function for an extended period of time, during which a certain aspect
of market environment may be learned (Snyder 2006). For this reason, many facility location
problems involve an extended planning horizon where firms make a set of dynamic decisions
over time. Ballou (1968), Wesolowsky (1973), and Daskin et al. (1992) provide pioneering
work on the dynamic facility location problem. Dynamic location problems provide a set
of plans that involve expanding facilities and/or relocating existing facilities as uncertain
information such as demand, travel cost, and competition unveil over time. Van Roy and
Erlenkotter (1982) and Baron et al. (2010) consider a facility location problem on a dynamic
setting where demand changes over time. Campbell (1990) studies the dynamic location of
transportation terminals where demand, transportation cost and the facility cost alter over
time. In this paper, we assume the refueling service demand rate to be the uncertain factor
and that a monopoly firm dynamically deploys its AFS to maximize its expected profit.

We limit the problem to a two-stage setting (with an infinite time horizon) since it suffices
to the value of demand learning in whether the service provider should actively deploy the
facility (in the first stage) or defer the commitment until the demand is learned (and deploy
in the second stage). On studying the dynamics of facility location problem in two stages,
Current et al. (1997) consider two versions of problems where the total number of facilities
to open varies depending on the future scenario. Berman and Drezner (2008) also study a
two-stage problem with a fixed number of facilities opened in the first stage. They attempt
to minimize the total cost of serving all the demand, while keeping in view that additional
facilities can be opened in the future stage. More recently, Shu (2010) study an integrated
location and two-echelon inventory model where location decisions are made in the first
stage and inventory replenishment and allocation decisions are made in the second stage to
minimize the expected system cost. Wang et al. (2013) propose a continuum approximation
framework to solve a dynamic facility location problem based on the projection of future
demand. Although these papers share the similar feature of dynamic location model (mostly
on a two-stage setting) with demand uncertainty, they do not capture the learning effect.
In particular, the length of each stage is exogenously given and the firm passively makes
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decision under a given setting. In this paper, we explicitly incorporate the demand learning
effect by assuming the learning time (length of the first stage) is endogenously determined
as a function of firm’s first-stage actions, the amount of first-stage demand coverage in
particular. In the sense that the firm has to make such demand coverage decision, our model
also has some similarity to the model from Shen (2006) in which the firm is determining
which and how many customers to serve designing supply chain network.

Hiller and Shapiro (1986) and Rob (1991) are the first ones to consider learning in a
firm’s capacity expansion. The optimal timing of operational decisions has also been studied
in the various fields of OR/OM in recent years; for example, Ke et al. (2013) study the
optimal timing to release a second version of a product considering product diffusion and
inventory costs. However, the learning issue in the facility location setting has not received
much attention. Our work attempts to partially fill this gap by studying the optimal timing
decisions in an emerging context of AFS location, taking into account the important, yet
under-studied aspect of demand learning.

3 Dynamic AFS location model

3.1 Single-stage model

To illustrate the problem setting, we first present a single-stage AFS location problem with-
out demand learning. Consider a service provider who enters a service region which is char-
acterized by a network G(V,A) where V is the set of nodes and A is the set of arcs. We
consider V = {I ∪ J } where I = {1, . . . ,m} is the set of attraction nodes and J = {1, . . . , n}
is the set of sites where the AFS can be located. We do not require the two sets, I and J ,
to be disjoint. In each attraction node i, we assume hi to be the frequency of visits by all
vehicle types. To capture the uncertainty in AFS service demand, we introduce a random
variable θ and refer to this as service demand rate. We assume the service demand rate is
identical across the network of the service region; i.e., θ is independent of i. Hence, θhi is
the potential AFV refueling service sales per unit time for each attraction node i.

As the AFS may not be located at the attraction node i, AFV drivers may need to take
detours to access the AFS. Naturally, the actual demand from node i captured by an AFS at
location j is decreasing in the detour distance, i.e., the distance between i and j . Therefore,
we consider the demand at node i ∈ I to be only partially covered in a proportion given by
the coverage function gi(d) ∈ [0,1] where d is the distance to its closest opened facility.
Similar to Berman and Krass (2002) (as well as Berman et al. (2003), Drezner et al. (2004),
and Drezner et al. (2010)), we assume that the demand coverage function gi(d) is a non-
increasing convex function of d with gi(0) = 1 for all i ∈ I . Hence, the actual sales per unit
time at node i can be expressed as θhigi(di(X)) where X is the set of opened AFS and
di(X) = minj∈X d(i, j). Denoting the revenue per unit service sales by r , total revenue per
unit time is

∑
i∈I rθhigi(di(X)). We denote the fixed cost for operating the set of AFS X

per unit time by f (X), where f (.) is a modular function. Revenue and cost are discounted
over an infinite time horizon with a discount rate denoted by α. Then, the Single-stage AFS
Location Problem [SALP] with a given service demand rate that maximizes the firm’s profit
can be formulated as follows:
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[SALP] max
X⊂J

{∫ ∞

0
e−αt

(∑

i∈I

rθhigi

(
di(X)

) − f (X)

)

dt

}

= max
X⊂J

{
1

α

(∑

i∈I

rθhigi

(
di(X)

) − f (X)

)}

. (1)

We note that the single-stage AFS location problem can be transformed to the Uncapac-
itated Fixed-charge Location Problem [UFLP].

Remark 1 The Single-stage AFS Location Problem [SALP] is reducible to the Uncapaci-
tated Fixed-charge Location Problem [UFLP].

Proof Let H represent the maximum total service demand rate of the service region per
unit time, H = ∑

i∈I hi . Define a new distance metric as d̃i (X) = maxj∈X[1 − gi(d(i, j))].
Then, it follows that d̃i (X) = maxj∈X[1 − gi(d(i, j))] = 1 − minj∈X gi(d(i, j)) = 1 −
gi(minj∈X d(i, j)) = 1 − gi(di(X)). Thus, for any X ⊂ J ,

1

α

(∑

i∈I

rθhigi

(
di(X)

) − f (X)

)

= 1

α

(∑

i∈I

rθhi

(
1 − (

1 − gi

(
di(X)

))) − f (X)

)

= 1

α

(

rθH − rθ
∑

i∈I

hi

(
1 − gi

(
di(X)

)) − f (X)

)

= 1

α

(

rθH − rθ
∑

i∈I

hi d̃i (X) − f (X)

)

.

Since H , θ and r are constants, maximizing this problem is equivalent to the following
UFLP:

min
X⊂J

{

f (X) + k
∑

i∈I

hi d̃i (X)

}

where k is a constant. �

This is an interesting and useful result since UFLP, while NP-Hard, has many practical
solution methods available (Daskin 1995). This relationship is also in line with the connec-
tion between coverage problems and median problems (of which the UFLP is an extension)
identified previously in the literature (Church and Weaver 1986).

Now, we consider the case in which the service demand rate θ is unknown. We assume
θ follows a certain distribution with mean of θ̄ and standard deviation of σ . Given the
distribution, one can then consider a problem of maximizing the expected profit as follows:

[SALP-U] max
X⊂J

{

Eθ

[
1

α

(∑

i∈I

rθhigi

(
di(X)

) − f (X)

)]}

. (2)

Using this problem as a building block, we introduce a two-stage AFS location problem that
incorporates service demand learning in the next subsection.

3.2 Two-stage model with learning

In the two-stage model, the subject of learning is the demand rate for the AFS service for
the given region which, in turn, determines the actual service sales for each node. In the first
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stage, the demand rate, θ , is uncertain, but its distribution is known (as in [SALP-U] (2)).
Based on its distribution, the service provider must decide in advance where and how many
stations to open, X1, taking into account the next stage. In Stage 2, we assume the service
demand rate is fully learned, i.e., the precise value of θ is realized. Upon the realization
of θ and given X1, the service provider deploys additional stations accordingly, X2, (as
in the [SALP] (1)) to maximize its total profit. The two stages reflect the firm’s strategic
location decisions at the early and mature stages of entering a market, respectively. To focus
on these strategic nature of location decisions, we do not consider the possibility of closing
or relocating the stations opened at the previous stage (e.g., Farahani et al. 2009). In the
literature, closure and relocation of facilities are typically assumed to be impossible because
doing so often incurs high cost (Current et al. 1997; Baron et al. 2010), which is especially
true for the case of AFS. Further, to focus on the learning effect in facility deployment
strategy, we do not consider the possibilities of the service provider conducting other means
of market research to learn θ . Denoting the demand learning time by T , the Two-stage AFS
Location Problem for a given T [TALP] is formulated as follows:

max
X1⊂J

{

Eθ

[∫ T

0
e−αt

(∑

i∈I

rθhigi

(
di

(
X1

)) − f
(
X1

)
)

dt + V
(
X1, θ

)
]}

(3)

where V (X1, θ) is the optimal objective value of:

max
X2⊂J\X1

{∫ ∞

T

e−αt

(∑

i∈I

rθhigi

(
di

(
X1 ∪ X2

)) − f
(
X1 ∪ X2

)
)

dt

}

. (4)

Let X2(X1, θ) be the optimal solution to (4), which is a function of X1 and the realiza-
tion of θ . To solve [TALP], X2(X1, θ), as a policy, has to be jointly optimized with X1.
Therefore, with some algebraic work, the problem can be reexpressed as follows:

[TALP] max
X1⊂J

X2(X1,θ)⊂J\X1,∀X1,θ

1

α

{

Eθ

[
(
1 − e−αT

)∑

i∈I

rθhigi

(
di

(
X1

)) − f
(
X1

)

+ e−αT

(∑

i∈I

rθhigi

(
di

(
X1 ∪ X2

(
X1, θ

))) − f
(
X2

(
X1, θ

))
)]}

. (5)

By extending the problem to a two-stage setting, we note that the service provider now
may have incentive to deploy fewer AFS in the first stage because it has an option to deploy
more in the second stage with a fully known θ . We characterize this relationship between the
demand learning time and the firm’s optimal solution in the following proposition. It follows
that when the demand learning time takes extreme values, the solution of the [TALP] reduces
to one of the single-stage problems.

Proposition 1

(i) There exists a threshold in the learning time τ̄ such that if τ̄ ≤ T , the optimal first stage
solution of the [TALP] (5) coincides with the optimal solution of the [SALP-U] (2).

(ii) There exists a threshold in the learning time τ such that if τ ≥ T , the optimal second
stage solution of the [TALP] (5) coincides with the optimal solution of the [SALP] (1)
for a given θ .
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Proof Let us denote the first-stage expected profit per unit time by π1(X
1) =

Eθ [∑i∈I rθhigi(di(X
1)) − f (X1)] and similarly the second-stage expected profit per unit

time as π2(X
2;X1) = ∑

i∈I rθhigi(di(X
1 ∪ X2)) − f (X1 ∪ X2), where X2 is a policy

X2(X1, θ) with the arguments suppressed for notational brevity. Then, the objective function
can be written as follows: Z[T ALP ] = 1

α
{(1 − e−αT )π1(X

1) + e−αT π2(X
2;X1)}.

(i) Let X∗ be the optimal solution for the [SALP-U]. We show that there exists τ̄ such that,
if τ̄ ≤ T , then

Z[T ALP ]
(
X∗,X2

)

≥ Z[T ALP ]
(
X̃1, X̃2

)

⇐⇒ 1

α

{(
1 − e−αT

)
π1

(
X∗) + e−αT π2

(
X2;X∗)}

≥ 1

α

{(
1 − e−αT

)
π1

(
X̃1

) + e−αT π2

(
X̃2; X̃1

)}

⇐⇒ π1

(
X∗) ≥ e−αT

(1 − e−αT )

[
π2

(
X̃2; X̃1

) − π2

(
X2;X∗)] + π1

(
X̃1

)
(6)

holds for any (X̃1, X̃2) and X2. Since π1(X
∗) ≥ π1(X̃

1) and e−αT

(1−e−αT )
approaches to 0 as

T increases, there exists τ̄ such that satisfies (6) if τ̄ ≤ T .
(ii) Let X∗ be the optimal solution for the [SALP] for a given θ . Similar to (i), we show that

there exists τ such that, if τ ≥ T , then

Z[T ALP ]
(
X1,X∗) ≥ Z[T ALP ]

(
X̃1, X̃2

)

⇐⇒ π2

(
X∗;X1

) ≥ (1 − e−αT )

e−αT

[
π1

(
X̃1

) − π1

(
X1

)] + π2

(
X̃2; X̃1

)
(7)

holds for any (X̃1, X̃2) and X1. Since (1−e−αT )

e−αT is increasing in T , the threshold value τ

which satisfies (7) can be obtained when X1 = ∅. That is,

T ≤ τ = − 1

α
ln

[

max

[
π1(X̃

1)

π2(X∗; ∅) − π2(X̃2; X̃1) + π1(X̃1)

]]

.

Note π2(X
∗; ∅) ≥ π2(X̃

2; X̃1) for any θ , thus 0 ≤ π1(X̃1)

π2(X∗;∅)−π2(X̃2;X̃1)+π1(X̃1)
≤ 1. There-

fore, there exists τ such that satisfies (7) if T ≤ τ . �

Proposition 1(i) implies that if the demand learning time is long enough, then the optimal
first-stage action will be identical to the single-stage case (no reason to defer the commit-
ment). This is because the second-stage profit will be small enough to not affect the first-
stage decision. In contrast, Proposition 1(ii) implies that if the intrinsic demand learning
time is fast enough, there is no incentive for the firm to take action in the first stage. The firm
can rather maximize the profit by forgoing the first stage and deploy stations on the second
stage with full demand information (extreme case of deferred commitment). To summarize,
adding the dynamic nature (two-stage) to the problem generates incentive for the firm to
delay the AFS deployment. In fact, the proposition suggests that the firm can always benefit
by deferring the deployment of some stations in the second stage (in which the deployment
becomes an option to be exercised depending on the realization of θ ), unless T takes an



Ann Oper Res

extremely large value. As the demand learning time T decreases, the firm is less likely to be
aggressive in the first stage.

We now consider that the demand learning time, T , is endogenously determined as
a function of first-stage action. Although T can be a function of X1 in any form, at
this moment, we assume it depends on the “first-stage coverage,” defined as c(X1) =∑

i∈I higi(d(X1)). More specifically, we assume T = φ(c(X1)) > 0 is a decreasing function
in c(X1) with some finite intrinsic learning time φ(∅). Hence, the more potential trips are
covered in the first stage, the faster the service demand rate is learned. In Sect. 5.1, we intro-
duce a more specific learning time function for the numerical study. Finally, the Two-stage
AFS Location Problem with Learning [TALP-L] is:

[TALP-L] max
X1⊂J

X2(X1,θ)⊂J\X1,∀X1,θ

1

α

{

Eθ

[
(
1 − e−αT

)∑

i∈I

rθhigi

(
di

(
X1

)) − f
(
X1

)

+ e−αT

(∑

i∈I

rθhigi

(
di

(
X1 ∪ X2

(
X1, θ

))) − f
(
X2

(
X1, θ

))
)]}

(8)

where the learning time is T = φ(c(X1)). The endogenous learning time introduces incen-
tive for the firm to actively learn the market by deploying facilities in the first stage. If the
firm makes an aggressive investment in the first stage, the demand learning time shortens
and thus the firm can expedite the time to have the fully known θ (and then deploy additional
stations). We illustrate this effect by contrasting the optimal solution of the [TALP-L] to that
of the [TALP] in the following proposition.

Proposition 2 Let (X1∗,X2∗(X1∗, θ)) be the optimal solution of the [TALP-L] (8) and
c(X1∗), T ∗ = φ(c(X1∗)) be the corresponding first-stage coverage and the learning time.
For the exogenous learning time T = T ∗, let (X1∗

T ,X2∗
T (X1∗

T , θ)) be the optimal solution of
the [TALP] and c(X1∗

T ) be the corresponding first-stage coverage. Then, c(X1∗
T ) ≤ c(X1∗).

Proof

Lemma 1 The optimal objective value Z[T ALP ] is a decreasing function in T .

Proof As in the proof of Proposition 1, we express the objective function of the [TALP]
as Z[T ALP ] = 1

α
{(1 − e−αT )π1(X

1) + e−αT π2(X
2;X1)} where π1(X

1) and π2(X
2;X1) are

the first-stage and second-stage expected profit per unit time, respectively. Note that we
suppress the arguments of the function X2 for brevity. Thus, Z[T ALP ] = 1

α
{π1(X

1) +
e−αT (π2(X

2;X1) − π1(X
1))}. Since π1(X

1) ≤ π2(X
2;X1), we know that Z[T ALP ] is de-

creasing in T .

First, we know Z[T ALP−L](X1∗,X2∗) ≤ Z[T ALP ](X1∗
T ,X2∗

T ) if T = T ∗ is given for the
[TALP] (because [TALP] has less constraint than [TALP-L]). Now, suppose c(X1∗

T ) >

c(X1∗). This implies T ∗ > T = φ(c(X1∗
T )) since φ(c) is decreasing in coverage c. From

Lemma 1, we know that 1
α
{(1− e−αT ∗

)π1(X
1∗
T )+ e−αT ∗

π2(X
2∗
T )} < 1

α
{(1− e−αT )π1(X

1∗
T )+

e−αT ∗
π2(X

2∗
T )}.

Thus, it follows that

Z[T ALP−L]
(
X1∗,X2∗) = 1

α

{(
1 − e−αT ∗)

π1
(
X1∗) + e−αT ∗

π2
(
X2∗)}
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≤ 1

α

{(
1 − e−αT ∗)

π1
(
X1∗

T

) + e−αT ∗
π2

(
X2∗

T

)}

<
1

α

{(
1 − e−αT

)
π1

(
X1∗

T

) + e−αT π2

(
X2∗

T

)} = Z[T ALP−L]
(
X1∗

T ,X2∗
T

)
.

This is a contradiction since ZT ALP−L(X1∗,X2∗) is the optimal objective value for the
[TALP-L]. �

The proposition shows that the presence of endogenous learning allows the AFS service
provider to learn the service demand rate faster by covering more potential trips in the first
stage. This is because the decision maker for the [TALP] does not have any incentive to
aggressively deploy stations if the demand learning time is exogenously given.

As shown in Proposition 1 and 2, the proposed two-stage location problem illustrates
the trade-off between active learning and deferred commitment in AFS deployment. While
the service provider always benefits from a short learning time, the first-stage decision is
irreversible in the future. Hence, a short-sighted initial decision may lead to sub-optimal
station locations and harm the firm in the long run.

3.3 Nonlinear integer programming formulation

Before we propose a solution method for the [TALP-L], we first reformulate the problem
as a nonlinear integer programming problem. Let θ be a discrete random variable with |S|
possible outcomes (scenarios) such that the probability of a scenario s is P (θ = θs) = ps

and
∑

s∈S ps = 1. Thus, the problem can be formulated as follows:

[P1]

max
X,Y,T

∑

s∈S

ps

α

[
(
1 − e−αT

)∑

i∈I

∑

j∈J

rθshigi(dij )Y
1
ij −

∑

j∈J

fjX
1
j

+ e−αT

[∑

i∈I

∑

j∈J

rθshigi(dij )Y
2
ijs −

∑

j∈J

fjX
2
js

]]

(9)

s.t. Y 1
ij ≤ X1

j , Y 2
ijs ≤ X1

j + X2
js ∀i ∈ I,∀j ∈ J,∀s ∈ S, (10)

∑

j∈J

Y 1
ij = 1,

∑

j∈J

Y 2
ijs = 1 ∀i ∈ I,∀s ∈ S, (11)

X1
j + X2

js ≤ 1 ∀j ∈ J,∀s ∈ S, (12)

T = φ

(∑

i∈I

∑

j∈J

higi(dij )Y
1
ij

)

, (13)

X1
j ,X

2
js, Y

1
ij , Y

2
ijs ∈ {0,1} ∀i ∈ I,∀j ∈ J,∀s ∈ S. (14)

The objective function (9) consists of four terms. The first term represents the expected
present value discounting the revenue over T periods of time for Stage 1 and the second term
accounts for the total cost of the operating AFS opened in the first stage over the two stages.
The third term represents the discounted value of the second-stage revenue and the last term
represents the total cost for the operating AFS opened in the second stage discounted at
present value from time T to ∞. The constraints (10) state that each attraction node can
be covered only by an open station for each stage. The constraints (11) ensure that each



Ann Oper Res

attraction node is covered by at least one station. Constraints (12) state that we cannot locate
another station at the same location if one already exists. We refer to the constraint (13) as
the Coverage constraint, since it expresses the relationship between the learning time T and
the coverage c(X1, Y 1) = ∑

i∈I

∑
j∈J higi(dij )Y

1
ij . Finally, the constraints (14) represent the

non-negativity and integrality of the decision variables.
The above problem is a mixed integer program with X1, Y 1,X2, and Y 2 as decision

variables and T as an auxiliary decision variable. The learning time T is endogenously
determined by the first-stage demand coverage, defined as c(X1, Y 1). For convenience, we
will use c to represent the coverage in the first stage and also use T = φ(c). We obtain the
upper bound in coverage, c, by opening all the AFS in the first stage. Also, we obtain a
lower bound in coverage, c, by finding the commonly opened AFS by solving the single-
stage problem, [SALP], for each scenario. Since the endogeneity of the learning time T

brings nonlinearity to the objective function (9), the currently proposed formulation [P1] is
very challenging to solve. In the next section, we propose a solution method for this problem.

4 Solution approach

4.1 Solution method

In this section, we develop an approximate solution method to solve the proposed nonlinear
integer program. Note that the feasible region of [P1] may not necessarily be a convex set
due to (13). Mahajan and Munson (2010) proposed to solve a class of nonlinear program-
ming problems involving non-convex feasible regions by decomposing the feasible regions
into several convex sets. Similar to this approach, we decompose the feasible region into sev-
eral subproblems with convex feasible region and then use a standard convex optimization
technique to solve the individual subproblems.

To remove the exponential terms in the objective function in [P1], we first introduce a
new decision variable W = e−αT . Then, the following holds.

Lemma 2 W = e−αT is an increasing function of the coverage c(X1, Y 1).

Proof Since T = φ(X1, Y 1) = φ(c(X1, Y 1)) is a decreasing function of coverage c(X1, Y 1),
so T decreases as we increase the coverage and W = e−αT being a decreasing function of
T increases with a decrease in T . Hence W(c) = eφ(c) = e−αT is an increasing function of
coverage. �

With the new variable W , the constraint (13) can be replaced with W ≤ e−αφ(c), which
eliminates the decision variable T . Since this constraint may create non-convexity in the
feasible region, we approximate W = e−αφ(c) by Ŵ using the piecewise linear functions
of c. More specifically, we separate the range of the first-stage coverage into a number of
intervals such that the linear approximation of W in each interval satisfies 0 ≤ W−Ŵ

W
≤ ε.

The error rate ε determines the precision level of the proposed approximation. Denoting the
resulting intervals by k ∈ K , we represent the lower and upper bounds of the coverage for
each interval by ck and ck , and the corresponding bounds of W by ωk and ωk , respectively.
The linear approximation in the kth interval can be expressed as Ŵ = ak + bkck , where ak

and bk are constants, and ck denotes the coverage c(X1, Y 1) restricted in the subinterval k

i.e., ck ∈ [ck, ck]. Recall that, by Lemma 2, the learning time T is a decreasing function of
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coverage. This implies that the piecewise linear approximation of W = e−αφ(c) should be an
increasing function of c, and thus the intervals [ωk,ωk] are non-overlapping.

We approximate the coverage constraint by |K| linear pieces with the domain restricted
to [ck, ck] for the kth approximation. Hence, the [P1] is decomposed into |K| subproblems.
The optimal solution of [P1] then corresponds to the maximum of the optimal solutions of
these subproblems. Hence, the [P1] assumes the following form:

[P2] max
k∈K

Πk, where

Πk = max
X,Y,Ŵ

∑

s∈S

ps

α

[

(1 − Ŵ )
∑

i∈I

∑

j∈J

rθshigi(dij )Y
1
ij −

∑

j∈J

fjX
1
j

+ Ŵ

[∑

i∈I

∑

j∈J

rθshigi(dij )Y
2
ijs −

∑

j∈J

fjX
2
js

]]

s.t. Y 1
ij ≤ X1

j , Y 2
ijs ≤ X1

j + X2
js ∀i ∈ I,∀j ∈ J,∀s ∈ S,

∑

j∈J

Y 1
ij = 1,

∑

j∈J

Y 2
ijs = 1 ∀i ∈ I,∀s ∈ S,

X1
j + X2

js ≤ 1 ∀j ∈ J,∀s ∈ S,

Ŵ = ak + bkck,

Ŵ ∈ [ωk,ωk], X1
j ,X

2
js, Y

1
ij , Y

2
ijs ∈ {0,1} ∀i ∈ I,∀j ∈ J,∀s ∈ S.

The [P2] is an approximation of the [P1]; however, we can find the bound on the relative
error that accumulates in approximating the total profit over the two stages.

Proposition 3 Let Π∗(W) and Π∗(Ŵ ) be the optimal profits of the problems [P1] and
[P2], respectively. Then, Π∗(Ŵ ) is a lower bound for Π∗(W) and the relative error between
Π∗(Ŵ ) and Π∗(W) is bounded by the relative error rate of the linear approximation, ε; i.e.,
Π∗(W)−Π∗(Ŵ )

Π∗(W)
≤ ε.

Proof Let us denote the first stage expected profit per unit time (terms in the objective
function corresponding to the first stage) by π1(X

1, Y 1) = ∑
s ps[∑i

∑
j rθ shigi(dij )Y

1
ij −

∑
j fjX

1
j ] and the second-stage expected profit per unit time as π2(X

2, Y 2;X1, Y 1) =
∑

s

∑
i

∑
j rpsθshigi(dij )Y

2
ijs − ∑

s

∑
j psfjX

2
js − ∑

j fjX
1
j . Therefore, the optimal ob-

jective function can be expressed as:

Π∗(W) = 1

α

[
(1 − W)π1

(
X1∗, Y 1∗) + Wπ2

(
X2∗, Y 2∗;X1∗, Y 1∗)]

= 1

α

[
π1

(
X1∗, Y 1∗) + W

(
π2

(
X2∗, Y 2∗;X1∗, Y 1∗) − π1

(
X1∗, Y 1∗))]

= 1

α

[
π∗

1 + W
(
π∗

2 − π∗
1

)]
.

Note that π1(X
1∗, Y 1∗) ≤ π2(X

2∗, Y 2∗;X1∗, Y 1∗) holds since one can only improve the ex-
pected unit profit in the second stage by deploying additional stations (otherwise, one can
preserve the first-stage expected unit profit by choosing not to open new stations).
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Now from the error rate inequality W−Ŵ
W

≤ ε, it follows that (1 − ε)W ≤ Ŵ and thus

(1 − ε)Π∗(W) = (1 − ε)
1

α

[
π∗

1 + W
(
π∗

2 − π∗
1

)]

≤ 1

α

[
π∗

1 + (1 − ε)W
(
π∗

2 − π∗
1

)]

≤ 1

α

[
π∗

1 + Ŵ
(
π∗

2 − π∗
1

)] = Π∗(Ŵ ).

Hence, we have Π∗(W)−Π∗(Ŵ )

Π∗(W)
≤ ε. �

Proposition 3 states that the approximate profit obtained by solving the [P2] provides a
good lower bound on the true optimal profit which is the objective value of the [P1]. This
enables us to bound the relative error rate in the approximation and the true profit by ε. Since
this error rate is the same as the error rate of the linear approximation, the AFS network de-
signer can achieve the desired precision in the profit approximation by appropriately choos-
ing the error rate ε. These results are based on the fact that we intend to under-approximate
the profit; thus, it provides us with the lowest amount of profit that can be obtained following
the approximation. In other words, the decision maker can be conservative while approxi-
mating the value of W , so that the approximated profit provides a lower bound for the exact
solution.

Although the constraint sets in [P2] are linear, the objective functions Πk’s still contain
nonlinear terms involving products of decision variables W with Y 1, Y 2 and X2. We use
the technique of Oral and Kettani (1992) to linearize the objective function by exploiting
the fact that Y 1, Y 2 and X2 are binary variables. We first define the coefficients of these bi-
nary variables as DY1

ij (Ŵ ) = ( 1
α
)rhigi(dij )

∑
s∈S psθsŴ ,DY2

ijs(Ŵ ) = ( 1
α
)rpsθshigi(dij )Ŵ ,

and DX2
js (Ŵ ) = ( 1

α
)psfj Ŵ ,∀i ∈ I,∀j ∈ J,∀s ∈ S and express the objective functions as

max
X,Y,Ŵ

∑

i∈I

∑

j∈J

DY1
ij (1)Y 1

ij −
∑

i∈I

∑

j∈J

DY1
ij (Ŵ )Y 1

ij − 1

α

∑

s∈S

ps
∑

j∈J

fjX
1
j

+
∑

s∈S

∑

i∈I

∑

j∈J

DY2
ijs(Ŵ )Y 2

ijs −
∑

s∈S

∑

j∈J

DX2
js (Ŵ )X2

js . (15)

The coefficient functions D′s are increasing functions of Ŵ and consequently achieve the
following lower and upper bounds at the respective bounds of Ŵ .

DY1
ij ≤ DY1

ij (Ŵ ) ≤ D
Y1
ij

DY2
ijs ≤ DY2

ijs(Ŵ ) ≤ D
Y2
ijs

DX2
js ≤ DX2

js (Ŵ ) ≤ D
X2
js

Now corresponding to each binary variable Y 1, Y 2 and X2 we introduce continuous decision
variables ζ Y1, ζ Y2 and ζX2 and a constraint respectively. We finally express the [P2] as
follows:

[P3] max
k∈K

Πk, where
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Πk = max
X,Y,Ŵ ,ζ Y1

ij
,ζ Y2

ijs
,ζX2

js

∑

i∈I

∑

j∈J

DY1
ij (1)Y 1

ij −
∑

i∈I

∑

j∈J

(
DY1

ij Y 1
ij + ζ Y1

ij

) − 1

α

∑

s∈S

ps
∑

j∈J

fjX
1
j

+
∑

s∈S

∑

i∈I

∑

j∈J

(
D

Y2
ijsY

2
ijs − ζ Y2

ijs

) −
∑

s∈S

∑

j∈J

(
DX2

js X2
js + ζX2

js

)

s.t. ζ Y1
ij ≥ DY1

ij (Ŵ ) + (
D

Y1
ij − DY1

ij

)
Y 1

ij − D
Y1
ij ∀i ∈ I,∀j ∈ J,

ζ Y2
ijs ≥ −DY2

ijs(Ŵ ) + (
D

Y2
ijs − DY2

ijs

)
Y 2

ij + DY2
ijs ∀i ∈ I,∀j ∈ J,∀s ∈ S,

ζX2
js ≥ DX2

js (Ŵ ) + (
D

X2
js − DX2

js

)
X2

js − D
X2
js ∀j ∈ J,∀s ∈ S,

Y 1
ij ≤ X1

j , Y 2
ijs ≤ X1

j + X2
js ∀i ∈ I,∀j ∈ J,∀s ∈ S,

∑

j∈J

Y 1
ij = 1,

∑

j∈J

Y 2
ijs = 1 ∀i ∈ I,∀s ∈ S,

X1
j + X2

js ≤ 1 ∀j ∈ J,∀s ∈ S,

Ŵ = ak + bkck,

X1
j ,X

2
js, Y

1
ij , Y

2
ijs ∈ {0,1}, ζ Y1

ij , ζ Y2
ijs , ζ

X2
js ≥ 0,

Ŵ ∈ [ωk,ωk] ∀i ∈ I,∀j ∈ J,∀s ∈ S.

The newly introduced constraints corresponding to each binary variable allow a certain term
of the objective function to act solely as a function of Ŵ if the binary variable in the term
is 1; and forces the term to be 0 otherwise [for detailed proof see Oral and Kettani (1992)],
thus making [P3] equivalent to [P2].

This is a Mixed Linear Integer Program [MILP], which can be solved using commercial
solvers such as CPLEX. In the next section, we show that the computational performance
with realistic-sized instances is quite satisfactory.

4.2 Computational performance

We now conduct a set of numerical experiments to illustrate the performance of the proposed
solution method. We use the 2000 census data from the City of Chicago (Census.gov 2010)
to generate two networks with 43 and 102 demand nodes. The data include the distance ma-
trix with each element representing the distance between the nodes dij , the average income
of a household, and the population at various nodes. We assume each census tract represents
one attraction node i ∈ I . We generate the facility cost fi proportional to the average income
(to reflect the land price) and the potential AFV users hi by its population. Specific values of
other parameters are provided in the numerical results in Sect. 5. The algorithm was coded
in C++ by integrating ILOG CPLEX 12.2, which was run on an HP Z400 desktop with a
2.93 GHz CPU and 16 GB of RAM.

By varying the size of the scenarios and the error rate ε, it was shown that the proposed
algorithm solves the problem in a reasonable time with sufficient accuracy. We use networks
of size 43 nodes (downtown Chicago) and 102 nodes (expanded Chicago downtown) with
three different sets of AFS candidate sites to evaluate the performance of the proposed al-
gorithm. For each of these settings, we generate 10 instances by varying the distribution of
adoption rate θ . In particular, we assume that θ is uniformly distributed with mean 0.5 for all
instances, and vary its standard deviation from 0.03 to 0.30 to generate different instances.
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Table 1 Computation times (in seconds) of the proposed algorithm

Demand (|I |) Candidate Sites (|J |) Scenarios (|S|)
ε = 0.1% ε = 0.01%

25 50 25 50

43 10 19 22 40 44

20 31 44 58 83

30 190 311 380 594

102 30 216 681 402 1,239

50 823 2,991 1,541 5,429

70 1,507 9,523 2,703 15,023

We report the average solution time of these 10 instances for both 25 and 50 scenarios. We
use the demand learning time function T = σ 2

γ c(X1,Y 1)
with all parameters identical to Sect. 5.

The solution times are presented for the two levels of error rate, ε = 0.1 % and 0.01%. The
computational performance of the algorithm (solution time measured in seconds) is illus-
trated in Table 1.

As shown in the Table 1, the proposed algorithm solves the problem efficiently. The
largest instance in the study with 102 demand nodes and 70 AFS candidate locations was
solved in approximately 9,500 seconds for the ε = 0.1% case and in 15,000 seconds for
the ε = 0.01% case on average. Note that there is a significant difference between the so-
lution times of the 25 and 50 scenarios, suggesting that the number of scenarios is a key
determinant of solution time.

5 Numerical study

In this section, we numerically study the impact of demand learning on the AFS loca-
tions and derive relevant managerial insights. In Sect. 5.1, we first characterize the ser-
vice provider’s optimal AFS deployment strategy under different market characteristics. In
Sect. 5.1, we study the value of having foresight in the presence of demand learning effect.
Throughout the section, we use a numerical example of a network with 102 attraction nodes
and 70 candidate AFS locations with 10 scenarios.

5.1 Optimal AFS deployment strategy

We characterize the market condition of the AFS service region by considering different
learning time functions. In particular, we consider different levels of (i) speed of learning
(how fast the market can be learned, captured by a coefficient γ > 0) and (ii) market vari-
ability (degree of uncertainty in the demand rate θ , captured by the variance of demand
rate σ 2). To numerically study the impact of demand learning effect, we employ a specific
demand learning time function defined as T = σ 2

γ c(X1,Y 1)
, where c(X1, Y 1) is the first-stage

coverage, i.e.,
∑

i

∑
j θhigi(dij (Y

1
ij )). Here, higher γ values represent faster demand learn-

ing, which leads to decreasing demand learning time T . In contrast, higher degrees of σ

results in slower demand learning. Although we employ a specific form of T in this section,
we note that our solution approach is applicable to any form of a learning time function.
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Fig. 1 Optimal AFS deployment
strategy under different market
characteristics

For the numerical example, we assume that the demand rate θ follows a uniform distri-
bution with mean of 0.5 and the standard deviation was varied by changing the support of
the distribution. We obtained 10 scenarios by varying σ from 0.03 to 0.3 with increments
of 0.03. We set the remaining parameters to α = 0.05, λ = 0.01, r = 190 with an error rate
of ε = 0.001(0.1 %). A unit of time is set equal to a quarter of a year. For convenience, we

define the fraction of the service demand coverage in the first stage as η = c(X1,Y 1)

c̄
, where

c̄ is the upper bound of the demand coverage (i.e., maximum coverage achieved when all
facilities are opened). This measure captures the firm’s optimal deployment strategy; i.e., an
increasing η suggests that a firm prefers active learning, whereas a decreasing η suggests
that a firm prefers deferred commitment.

Figure 1 illustrates the three different types of the firm’s optimal deployment strategies
for the three different levels of γ : γ

H
= 50×105 (fast-learning market), γ

M
= 3×105 (mod-

erate market), and γ
L

= 0.8 × 105 (slow-learning market). We observe that η decreases with
σ for γ

H
but increases for γ

L
. Hence, for the fast-learning markets, deferred commitment

in AFS deployment (open less AFS in the first stage) is recommended as market variability
increases. This because the benefit of actively learning the market (expediting the demand
learning time) is limited when the learning speed of the market is fast (T is relatively short
even if the firm does not cover much in the first stage). For the slow-learning markets, how-
ever, we recommend early deployment to actively learn the market (open more AFS in the
first stage) as market variability increases. This is because the firm attempts to compensate
for the slow learning speed by increasing the demand coverage. For the moderate market
(γ

M
), we observe that η first decreases and then increases with the increase in σ . That is,

the firm first prefers the deferred commitment strategy but later prefers the active learning
strategy as uncertainty in the market increases. This result reveals that the speed of market
learning and the market variability are interacting; the firm’s optimal deployment decision is
influenced more by the learning speed when σ is small, but is influenced more by the market
variability as σ becomes sufficiently large.

Table 2 compares the fraction of the demand coverage in the first stage η, the expected
total profit Π , and the demand learning time T for the various values of γ and σ . We observe
that Π increases as γ increases for a fixed σ since the demand learning time T decreases
with γ . We also observe that Π increases with σ (except for the case when σ is very high
and γ is very low). This reveals that a firm typically gains a higher expected total profit
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Table 2 Fraction of demand coverage in the first stage, expected total profits (in thousand $) and demand
learning time (in quarter of a year) under different market characteristics

σ = 0.03 0.06 0.09 0.12 0.16 0.18 0.21 0.24 0.27 0.30

Hi
(γ

H
)

η 0.3650 0.2537 0.2537 0.2031 0.1958 0.1751 0.1607 0.1425 0.1352 0.1352

Π 18,056 18,640 19,554 20,712 22,055 23,491 25,099 26,518 28,201 29,722

T 0.0070 0.0400 0.0901 0.2001 0.3242 0.5220 0.7744 1.1409 1.5219 1.8789

Mod.
(γ

M
)

η 0.3650 0.3251 0.3251 0.2865 0.2865 0.2865 0.3251 0.3251 0.3251 0.3650

Π 18,053 18,577 19,253 20,031 20,755 21,345 21,826 22,190 22,428 22,569

T 0.1113 0.5000 1.1251 2.2692 3.5456 5.1057 6.1254 8.0006 10.126 11.133

Low
(γ

L
)

η 0.3650 0.3650 0.3650 0.3650 0.3984 0.3984 0.3984 0.4315 0.4315 0.4442

Π 18,041 18,468 18,890 19,224 19,358 19,424 19,350 19,161 18,994 18,808

T 0.4453 1.7812 4.0078 7.1249 10.201 14.689 19.994 24.111 30.515 36.590

Table 3 Impact of discount rate in the expected total profits (in thousand $)

σ = 0.03 0.06 0.09 0.12 0.16 0.18 0.21 0.24 0.27 0.30

Hi
(γH )

αL 90,268 93,196 97,820 103,996 111,781 120,451 129,659 139,171 148,964 158,946

αM 18,057 18,640 19,555 20,712 22,055 23,491 25,099 26,518 28,201 29,722

αH 9,025 9,311 9,759 10,313 10,952 11,612 12,289 12,940 13,580 14,211

Mod.
(γ

M
)

α
L

90,235 93,120 97,511 102,812 108,680 114,686 120,629 126,242 131,613 136,838

αM 18,053 18,577 19,253 20,031 20,755 21,345 21,826 22,190 22,428 22,569

αH 9,022 9,264 9,555 9,831 10,057 10,203 10,296 10,313 10,279 10,224

Low
(γ

L
)

α
L

90,268 92,942 96,587 100,763 104,773 108,196 111,093 113,268 115,234 116,507

αM 18,041 18,468 18,890 19,224 19,358 19,424 19,350 19,161 18,994 18,808

αH 9,006 9,185 9,302 9,358 9,339 9,275 9,203 9,125 9,057 9,005

when entering a market with a higher uncertainty since it can take advantage of the higher
demand rates in such markets with learning and recourse action. This insight coincides with
the real options literature (Dixit and Pindyck 1994): the value of the real options increase as
the market variability increases (the decision maker can exercise the option when the market
turns out to be good; otherwise, the decision maker can simply stay put). When the learning
speed is slow, however, the expected total profit starts to decrease as the market variability
increases sufficiently high. This is because the demand learning time (i.e., the length of the
first stage) becomes too long and the profit streams in the second stage are discounted too
much. We finally note that the demand learning time increases as the market variability
increases.

Finally, we study the impact of discount rate in Table 3 by varying the degrees of α

(α
L

= 0.01, α
M

= 0.05, and α
H

= 0.1) under different levels of σ and γ . The remaining
parameters are identical to the previous setting. As expected, lower degrees of discount rate
lead to greater level of expected total profits. In addition, we find that, although the expected
total profit generally increases with the degree of market uncertainty (σ ), interestingly, high
degree of discount rates coupled with low speed of market learning result in decrease in the
expected total profit with market uncertainty. This implies that high discount rate depreciates
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the value of second stage significantly and thus eliminates the real option effect introduced
earlier.

5.2 Value of foresight in the presence of demand learning

We now investigate the value of having foresight in planning the deployment of AFS in the
presence of demand learning. As a benchmark, we consider a myopic planner who max-
imizes the profit for the current stage only without considering the recourse option. The
myopic planner represents a decision maker without foresight; a service provider that fo-
cuses on the short-term profit and disregards the long-term plan with a pressure to perform
in the immediate future. This exercise illustrates the value of the proposed model in relation
to the other existing models in the literature that do not include the demand learning and
recourse effect.

Similar to the optimal planner, we assume that the myopic planner knows the distribution
of the demand rate and deploys stations to maximize the expected profit in the first stage.
While making the first-stage decision, however, the myopic planner does not take into ac-
count the demand learning effect, although the learning process is still in place. Once the
first stage elapses (after the learning is completed based on its first-stage coverage), the my-
opic planner is given the true demand rate and deploys the additional stations needed to
maximize the total profit in the second stage. The formulation of the two-stage myopic AFS
location problem is as follows:

∫ T

0
e−αtV

(
X1

)
dt +

∫ ∞

T

e−αtV
(
X2;X1, θ

)
dt, (16)

where V
(
X1

) = max
X1⊂J

{

Eθ

[∑

i∈I

rθhigi

(
di

(
X1

)) − f
(
X1

)
]}

and V
(
X2;X1, θ

) = max
X2⊂J\X1

{∑

i∈I

rθhigi

(
di

(
X1 ∪ X2

)) − f
(
X1 ∪ X2

)
}

where T = φ
(
c
(
X1

)
, σ

)
.

The objective function of the myopic planner’s problem (16) can be rewritten as

1

α

{(
1 − e−αT

)
V

(
X1

) + e−αT V
(
X2;X1, θ

)}
. (17)

To contrast the behavior of the two service providers, we use the numerical examples with
a high and low learning speed (γ

H
, γ

L
) introduced in Sect. 5.1. We let NO, rO,fO,ΠO ,

and TO , and NM, rM,fM,ΠM , and TM be the average number of opened stations, the total
revenue, the total AFS operation cost, the expected total profit, and the resulting demand
learning time that corresponds to the optimal and the myopic planner, respectively.

Table 4 compares the two planners’ optimal decisions (N,r,f,Π,T ) for the different
levels of γ and σ . We observe that the difference in the optimal decisions increases with σ

for γ
H

, but decreases with σ for γ
L

. Thus, in the presence of demand learning, the lack of
foresight harms the myopic planner more under such conditions. In other words, the value
of deferred commitment becomes greater as market variability increases in the fast-learning
markets. However, the value of active learning becomes greater as market variability de-
creases in the slow-learning markets.
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Table 4 Comparison of decisions for the optimal and the myopic planner (total profits are in thousand $)

σ = 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

Hi
(γ

H
)

[ Optimal Planner ]

NO 16.8 16.9 16.8 16.8 16.8 17.0 16.7 17.4 17.5 17.8

rO 59,325 60,252 60,833 62,675 64,376 64,924 66,479 67,831 70,269 72,274

fO 41,269 41,612 41,278 41,968 42,322 41,434 41,381 41,314 42,068 42,553

ΠO 18,057 18,640 19,555 20,707 22,054 23,490 25,098 26,517 28,201 29,722

TO 0.0070 0.0400 0.0901 0.2001 0.3243 0.5220 0.7744 1.1409 1.5219 1.8789

[ Myopic Planner ]

NM 17.7 18.6 19.1 19.9 20.2 20.5 21.0 21.4 21.9 22.4

rM 62,022 65,231 67,161 70,956 72,398 74,002 76,187 77,813 80,450 83,127

fM 44,063 47,015 48,565 51,853 52,677 53,615 55,074 55,931 57,721 59,512

ΠM 17,959 18,216 18,596 19,102 19,721 20,387 21,113 21,882 22,729 23,616

TM 0.0057 0.0229 0.0515 0.0915 0.1429 0.2059 0.2801 0.3659 0.4631 0.5717

Low
(γ

L
)

[ Optimal Planner ]

NO 16.8 17.5 17.8 18.5 19.2 19.5 20.0 20.9 21.4 22.4

rO 59,105 60,867 60,977 61,853 63,619 62,492 61,329 63,961 62,972 63,669

fO 41,064 42,400 42,087 42,628 44,261 43,068 41,979 44,800 43,977 44,861

ΠO 18,041 18,468 18,890 19,224 19,358 19,424 19,349 19,161 18,994 18,808

TO 0.4453 1.7812 4.0078 7.1249 10.201 14.689 19.994 24.111 30.515 36.590

[ Myopic Planner ]

NM 17.7 18.6 19.1 19.9 20.2 20.5 21.0 21.4 21.9 22.4

rM 61,982 64,855 66,063 68,168 67,838 67,236 66,592 65,502 64,616 63,669

fM 44,025 46,664 47,577 49,377 48,793 48,056 47,388 46,374 45,627 44,861

ΠM 17,957 18,191 18,485 18,791 19,045 19,180 19,204 19,128 18,989 18,808

TM 0.3659 1.4636 3.2931 5.8544 9.1475 13.172 17.929 23.418 29.638 36.590

We further investigate the difference in the expected total profits by analyzing the per
unit profit for each stage. Since the myopic planner seeks to maximize only the current
stage’s expected profit, its first-stage expected unit profit is always greater than or equal to
that of the optimal planner’s (π1

O ≤ π1
M ), as shown in Fig. 2. In the first stage, the optimal

planner attempts to hedge against the market variability, thus the first-stage profit decreases
as market variability increases. In the second stage, however, the optimal planner typically
gains a greater expected unit profit (π2

O ≤ π2
M ). The first-stage expected unit profit for the

myopic planner remains flat regardless of market variability because it does not take into
account the second-stage recourse option.

Interestingly, the optimal planner tends to gain less in the first stage, but more in the
second stage as σ increases for a high γ (Fig. 2(a)). However, the optimal planner tends
to behave similar to the myopic planner as σ increases for a low γ (Fig. 2(c)). This effect
is attributable to the stiff discount of the second-stage profits with the extended demand
learning time (hence, the second stage becomes less relevant when making the first-stage
decision). For the moderate level of γ , both trends were observed in each of the extreme
values of σ (Fig. 2(b)).
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Fig. 2 Profit comparison for the optimal and the myopic planner at each stage

From Table 4, we also observe that the myopic planner invests more on the stations (both
in terms of N and f ) relative to the optimal planner due to the lack of foresight. Since
the myopic planner invests more in the facility costs, the myopic planner typically gains
a higher revenue than the optimal planner. However, the difference in the revenue and the
facility cost (i.e., the expected total profit) of the optimal planner is always greater than that
of the myopic planner, and this gap increases with market variability.

To better understand the over-commitment in facility investment for the myopic planner,
we compare the ratio of total facility (station) operation cost to the total revenue for both
planners, fO

rO
and fM

rM
, in Fig. 3. This ratio represents the marginal rate of return to the AFS

facility investment. We observe that the return on the investment for the myopic planner
is always lower than that of the optimal planner. The difference between these two ratios
increases with σ for a high γ (as shown in Fig. 3(a)) but decreases for a low γ (as shown in
Fig. 3(c)). This illustrates that the over-commitment in facility deployment adversely affects
the myopic planner when γ and σ are both either high or low.
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Fig. 3 Over-commitment in AFS investment with lack of foresight

6 Conclusions

In this paper, we study the two-stage alternative fuel service location problem in the presence
of endogenous demand learning time for the alternative fuel charging service. In particular,
a service provider sequentially deploys charging stations over the two stages when the ser-
vice demand rate is learned at the end of the first stage. The length of the first stage (demand
learning time) is determined by the service provider’s deployment action in this stage. We
model the problem as a two-stage nonlinear integer program and propose an efficient and ef-
fective solution method. The proposed algorithm provides a framework to achieve a desired
error rate of accuracy in the optimal solution.

Using the model, we first study the trade-off between active learning and deferred com-
mitment in AFS deployment strategy under different market characteristics. For the fast-
learning markets, we recommend deferred commitment as uncertainty in the service demand
rate increases. In contrast, for the slow-learning markets, active learning is recommended
as uncertainty in the service demand rate increases. Next, we show that the value of having
foresight in deployment of AFS becomes crucial when the learning speed and uncertainty are
both either high or low. The lack of such foresight typically results in an over-commitment
in facility investment while earning a lower expected profit.
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Finally, we note that this research can be extended in several ways. First, it would be
interesting to consider the site-specific service demand rate θi . Although the demand rates in
the same market will likely to be correlated, relaxing the uniform demand rate will certainly
enrich the proposed model. Another possible research direction is to study a multi-stage
version of the problem where the service demand rate (or its distribution) is partially learned
over time. One may consider a Bayesian learning scheme in implementing this research. We
leave these promising research directions as future work.
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