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Abstract: We study the problem of designing a two-echelon spare parts inventory system consisting of a central plant and a
number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both lev-
els of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the
base-stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject
to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost
of the system. The problem is NP-hard and a Lagrangian heuristic is proposed. We present computational results and discuss the
trade-off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 730–744, 2009
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1. INTRODUCTION

Logistics is a vital aspect of business management. Logis-
tics (transportation, inventory, and administrative) costs
amounted to 8.7% of the US GDP in 2002 [22]. This pro-
portion decreased significantly from the early 1980s (16.2%
in 1981), suggesting an improvement in efficiency of logis-
tics management over the past two decades. Traditionally,
companies have managed distribution and storage decisions
separately, in part due to the complexity of combining them.
Furthermore, the tactical and operational decisions of stock-
ing and distribution are considered separately from strate-
gic decisions of facility location and network design. Shen
et al. [9], Daskin et al. [10] and Candas and Kutanoglu [7]
have shown that ignoring the effect of inventory in facil-
ity location decisions can lead to suboptimal supply chain
designs. However, it remains a challenging task to integrate
facility location with inventory management and distribution
decisions, especially with considerations of customer service
levels.

In this article, we are concerned with the problem of
designing a two-echelon service parts supply chain under
customer service level constraints. This problem is of impor-
tance because spare parts inventory is expensive. As pointed
out by IBM [18], 30–60% spare parts inventory reduction
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at 30 client sites can generate a business value of US$
10–500 million per year. About a decade ago, inventory
investment accounted for about 28% of the total cost of
service parts logistics systems, whereas warehousing and
“other” (including general administrative, personnel and mis-
cellaneous) costs accounted for about 35% and transportation
accounted for only 8.4 % [9]. Although the absolute monetary
values of these costs have changed over the years, the ratios
between these costs should remain at similar orders of mag-
nitude. Because they can amount up to one-third of the total
cost, inventory investments must be included in consideration
when designing service parts systems.

In our problem setting, there is a central manufactur-
ing plant with limited production and storage capacity. The
firm locates service centers (SCs) that hold inventory to sat-
isfy demand from spatially dispersed customers and replen-
ish inventory by ordering from the plant. All SCs and the
plant manage inventory using continuous review base stock
(S − 1, S) policies. The problem is to determine the number
and location of DCs, the assignment of customers to SCs and
the base stock levels at SCs and the plant, subject to response
time requirements.

Base stock (S − 1, S) inventory policies are suitable for
products with relatively low demand and high inventory hold-
ing costs. Moinzadeh and Lee [23] provide an analytical
model to determine whether base stock policies are optimal
given certain problem parameters. Their results suggest that
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a base stock policy is optimal when demand rates are low
and setup costs are low relative to holding cost rates. This
class of policies is used in spare parts inventory systems, in
which a failed part is replaced by a new one from inventory.
If the failure rate is low, a base stock policy is desirable. In
this article, we assume that the plant and SCs manage inven-
tory using a base stock policy. Such systems exist in a wide
range of sectors, including military, airlines, and computer
manufacturing. We use a spare parts inventory system as our
motivating example, although the model is applicable to a
variety of production-inventory systems as well.

One might think that when demand rates are low, it would
always be better to ship directly from the plant to the customer
instead of keeping inventory at SCs. However, in many appli-
cations (especially in spare parts systems), the customers are
sensitive to response times. It is then desirable to store inven-
tory at SCs that are close to customers located far from the
plant. Caglar et al. [6] state that such a system is suitable
for spare parts systems where SCs equipped with spare parts
inventory and technicians are located close to customers. For
example, In IBM’s multi-echelon service parts system, items
are sent to customers from nearby stocking locations when
needed [8,20]. In this article, we consider this class of inven-
tory systems, in which customers wish to be served within a
time limit and thus SCs must be located.

The remainder of this article is organized as follows: In
Section 2, we review the related literature on facility loca-
tion and multi-echelon inventory models. Then we present
the formulation of the model, its properties, and the solu-
tion approach in Sections 3 and 4, respectively. Finally, we
present results of computational experiments in Section 5 and
conclude in Section 6.

2. LITERATURE REVIEW

Location analysis has been studied extensively in the oper-
ations research, economics, and geography literature. Daskin
[10], Drezner [12], and Drezner and Hamacher [13] provide
excellent reviews of the theory. In these models, we are con-
cerned with the strategic issue of selecting candidate sites to
locate facilities and cover demand. However, inventory con-
siderations have traditionally not been included in the facility
location literature.

One of the earliest and most influential articles in the area of
multi-echelon inventory management is by Sherbrooke [32].
For a two-echelon inventory system for repairable parts oper-
ating under (S − 1, S) policies, he develops the METRIC
model to approximate expected backorders at each facil-
ity. Another classical article is written by Graves [17] who
proposes a two-parameter approximation as an alternative
to METRIC. He shows numerically that the two-parameter
approximation is more accurate than METRIC. For textbook
treatments of multi-echelon inventory theory including the
above models, see, for example, [1, 32].

There has been research on two-echelon inventory systems
that consider time-based service requirements. Kutanoglu
[20] studies a system with the possibility of emergency
lateral transshipments between the local facilities (i.e., SCs).
His evaluation model provides important insights including
how time-based service requirements are more relevant in
service parts systems than fill rates, and how emergency
lateral transshipment improves response time performances.
Caglar [5] and Caglar et al. [6] develop algorithms to optimize
stocking levels at both levels under response time constraints.

Several articles study inventory control under time-
sensitive service requirements in different supply chain set-
tings. Lee and Billington [20], motivated by the operations
of HP’s Deskjet Printer supply chain, study the performance
measures of fill rate, mean delay, and variance of delay,
in a general material flow network. Ettl et al. [15] formu-
late an optimization model which takes into account actual
delays due to stock-outs. More recently, Simchi-Levi and
Zhao [3, 5] study a tree network supply chain facing more
realistic “transit times” instead of i.i.d. stochastic lead times.
They also provide algorithms to minimize inventory costs
subject to service requirements requiring that the delivery
lead time be shorter than a specified threshold with a certain
high probability (i.e., the service level).

Although the articles mentioned earlier provide important
insights on the tactical and operational aspects of two-echelon
inventory systems, the focus of our article is on the strategic
design phase.

Shen et al. [29] propose an integrated approach of supply
chain design. By explicitly including inventory cost terms
in the strategic facility location model, the supply chain
structure is optimized under an objective function that much
better reflects the true operating cost than does the tradi-
tional distance-based objective. They show that the integrated
approach produces better supply chain designs than the tra-
ditional sequential design-operations optimization approach.
Building on the integrated framework, various articles have
been published. Daskin et al. [11] and Shu et al. [34] improve
the solution technique. Shen and Qi [31] further incorporate
operational routing costs into the model. Shen and Daskin
[30] evaluate the trade-offs between cost minimization and
service maximization. Ozsen et al. [25,26] consider the effect
of storage capacity at facilities under single and multiple
sourcing. For more information regarding these models, see
Shen [28] which provides a more detailed survey. Although
the models point out the importance of the integrated planning
approach, only single-echelon problems in which inventory
is only held at one level of facilities have been studied.

Multi-echelon inventory-location models have received
relatively little attention. Nozick and Turnquist [24] consider
the location of distribution centers (lower echelon) in a two-
echelon system with inventory held at distribution centers and
a plant operating under (S − 1, S) policies. They utilize a lin-
ear approximation for safety stock costs as a function of the
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number of distribution centers. The resulting location model
is structurally identical to the uncapacitated fixed charge
problem, with inventory costs included in the fixed location
cost as a constant.

More recently, Candas and Kutanoglu [7] consider a multi-
commodity two-echelon inventory-locationprobleminwhich
stocking levels and fill rates can be optimized to achieve a
system-wide time-based service level. They formulate a non-
linearintegerprogrammingmodelandproposealinearization-
based technique to solve small to medium sized instances.
Their results show that the integrated approach can yield
solutions that achieve the same service level at a lower cost.

Despite the important contributions of the articles men-
tioned earlier, all of them treat replenishment lead time as
deterministic with the exception of the article by Nozick
and Turnquist which treats the replenishment process as an
M/G/∞ queue. Only a small number of inventory-location
models in the literature allow replenishment lead times to be
stochastic. Eskigun et al. [17], Eskigun et al. [15], and Souri-
rajan et al. [36] study different supply chain network design
problems with stochastic lead times. Finally, Benjaafar et al.
[2] study the problem of locating facilities and managing
inventory in a single-echelon system. All of the articles dis-
cussed in this paragraph utilize approximate or exact queuing
formulas to model congestion in stochastic lead times.

In this article, we build on the idea of Benjaafar et al. and
consider a more general two-echelon system. Our problem
also includes consideration of response time and distance
constraints. To the best of our knowledge, there is no pub-
lished work on joint inventory-location problems that con-
siders both stochastic replenishment lead time and response
time requirements.

3. MODEL FORMULATION

3.1. Basic Formulation

We consider a single-product supply chain which consists
of a single plant (upper echelon), a set of SCs (lower echelon)
and a set of customers. The plant manufactures the item and
holds inventory to meet demands from SCs. The SCs hold
inventory to fulfill customer orders. Each customer places
orders at an assigned SC following a Poisson process, consis-
tent with the classical exponential failure model in reliability
theory. We assume that orders from different customers are
independent. This assumption is valid when customers do
not interact with each other. We assume that the plant and the
SCs each have fixed amount of storage space to hold inventory
and operate with continuous review (S −1, S) replenishment
policies. As the items are typically expensive in many spare
parts applications, it is also possible to interpret the capacity
restriction as a budget constraint.

When a customer places an order, the SC sends one unit
of the product from its inventory (if there is stock) to the

customer and immediately places an order with the plant.
When the plant receives an order, it sends one unit of the
product from its inventory (if there is stock) to the SC, and
immediately releases an order of one unit to its production
line. If a service center or the plant is out of stock, the demand
is backordered until they are filled. Backorders are handled
in a first-come, first-served (FCFS) manner. Finished goods
from the production line are used to fill backorders or are
stored as inventory at the plant immediately after they leave
the production line.

The problem is to determine simultaneously the optimal
number and location of SCs, the assignment of customers to
the opened SCs and the inventory stocking levels at SCs and
the plant. The costs considered in the model include fixed
location costs of the SCs, transportation costs from the plant
to the SCs and from the SCs to the customers, and inven-
tory holding costs at the plant and at the SCs. We begin by
introducing the following notation:

3.1.1. Sets

I = Set of customers
J = Set of candidate service center locations

3.1.2. Cost Parameters

fj = Fixed cost of opening a SC at location j

hj = Holding cost per unit of inventory per unit time at
location j

p = Backorder cost per unit of inventory per unit time
dij = Shipping cost per unit from location j to cus-

tomer i

3.1.3. Demand and Other Parameters

λi = Demand rate (Poisson) at customer i

λ = Total demand of all customers (= ∑
i∈I λi)

µ = Order processing or manufacturing rate at the
plant

ρ = Utilization rate of the plant (= λ/µ)
τ = Average response time requirement

αj = Deterministic transportation lead time from the
plant to location j

dmax = Maximum distance allowed between customer
and the assigned SC

aij = 1 if customer i is within dmax distance from
candidate location j , 0 otherwise

Cj = Storage space available at candidate SC location
j , in number of units of the product

3.1.4. Decision Variables

Xj = 1 if a SC is located at j , 0 otherwise
Yij = 1 if demand at customer i is assigned to SC at j ,

0 otherwise
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Sj = Base stock level maintained at SC at j

S0 = Base stock level maintained at the plant

3.1.5. Service Variables

Īj = Steady state expected inventory level at SC j

B̄j = Steady state expected backorder level at SC j

W̄j = Steady state expected response time at SC j

Ī0 = Steady state expected inventory level at the
plant

B̄0 = Steady state expected backorder level at the
plant

Nj(t) = Number of replenishment orders made by DC
j that has not yet arrived by time t

Using the above notation, the model can be formulated as
follows:

min
∑
j∈J

(
fjXj + hj Īj + pB̄j +

∑
i∈I

dijλiYij

)
+ h0Ī0

(1)

Subject to:∑
j∈J

Yij = 1, for each i ∈ I (2)

Yij ≤ aijXj , for each i ∈ I , j ∈ J (3)

Sj ≤ CjXj , for each j ∈ {0} ∪ J (4)

W̄j ≤ τ , for each j ∈ J (5)

Xj ∈ {0, 1}, for each j ∈ J (6)

Yij ∈ {0, 1}, for each i ∈ I , j ∈ J (7)

Sj ≥ 0, integer, for each j ∈ {0} ∪ J (8)

The objective (1) is to minimize the sum of the (annualized)
fixed location costs, shipment costs, inventory holding costs
at the plant and the SCs, and backorder costs at SCs. Back-
orders at the plant do not incur a monetary cost as they are
considered “internal” to the system. Constraints (2) require
that all customers must be assigned to SCs. Constraints (3)
state that customer assignments cannot be made to a candidate
location unless a SC is opened and that the resulting dis-
tance is shorter than dmax. Constraints (4) require that the base
stock level at a SC cannot exceed the storage capacity. The
service time constraints (5) state that the expected response
time (time between order arrival and shipment made) cannot
exceed the required level. Finally, (6–8) are nonnegativity
and integrality constraints on the decision variables.

In this model, the response requirements are that (i) the
distance between any customer and the assigned SC is no
longer than a specified limit dmax, which is captured by con-
straint (3); and (ii) the average time between receiving an
order and sending out the item at any SC must not exceed

the service guarantee (5). Models in the spare parts inven-
tory management literature typically consider either shortage
costs or service requirements. The models that consider ser-
vice requirements have such constraints either on service
level [8] or response time [5]. The former type of constraints
limit the chance of stocking out and essentially ignore the dif-
ferences between stock-outs with short response times (e.g.,
an hour) and those with long response times (e.g., 2 days).
In our two-echelon system, stock-outs at SCs may have a
short response time if the plant has the item in stock and
ships immediately or a long lead time if the plant also has a
stock-out. As we are mainly concerned with designing spare
parts inventory systems, a response time requirement is more
appropriate.

Considering each SC as a queuing system, it is possible to
apply Little’s law and replace (5) by the following:

B̄j ≤ τ
∑
i∈I

λiYij (9)

Before proposing the solution algorithm, we would like to
express the inventory and backorder levels in our formulation
in terms of the decision variables, i.e., (X, Y , S).

3.2. Inventory Level at the Plant

Under the (S − 1, S) policy, the demand faced by the plant
is the superposition of the demand processes at the customers,
which are independent and Poisson. Therefore, the produc-
tion line at the plant behaves as a queue with Markovian
arrivals. Let N0 denote the steady state number of orders in
the queuing system (in line and in service). It is then standard
to express:

Ī0 = S0 − E[N0] + B̄0 (10)

B̄0 = E[N0] −
S0−1∑
s=0

[1 − F0(s)] (11)

where F0(s) =
s∑

m=0

P(N0 = m)

By substituting steady state probabilities into the above
formulas, we can easily obtain the expected plant inventory
and backorder levels for different manufacturing queue struc-
tures. For example, we may substitute the standard formula
for the steady state distribution of the number in system of the
M/M/c queue. It is also possible to allow a batch ordering
policy at the plant.1 Suppose the plant sends a job request
to the production line after receiving Q > 0 orders. Then

1 We would like to thank an anonymous referee for pointing out this
fact.

Naval Research Logistics DOI 10.1002/nav



734 Naval Research Logistics, Vol. 56 (2009)

the interarrival time distribution at the manufacturing queue
is Erlang with parameters (Q, λ). Then we may substitute
the steady state distribution of the EQ/M/1 queue as given
in [19], for example.

For simplicity we will only consider the M/M/1 case. Buza-
cott and Shanthikumar [4] show that the average inventory
and backorder levels at the plant are given by:

Ī0 = S0 − ρ

1 − ρ
(1 − ρS0) (12)

B̄0 = ρS0+1

1 − ρ
(13)

W̄0 = B̄0

λ
= ρS0+1

λ(1 − ρ)
(14)

3.3. Inventory Level at SCs

Similar to the case for the plant, the steady state expected
inventory and backorder levels at each SC as follows:

Īj = Sj − E[Nj ] + B̄j (15)

B̄j = E[Nj ] −
Sj −1∑
s=0

[1 − Fj (s)] (16)

whereFj (s) =
s∑

m=0

P(Nj = m)

By disaggregating the backorders at the plant due to each
SC [see [17], for example], the expected value of Nj is
given by:

E[Nj ] = λj

λ
B̄0 + λjαj = λj

λ

ρS0+1

1 − ρ
+ λjαj (17)

The exact algorithm proposed by Graves [17] to obtain the
distribution of Nj is too computationally costly to be included
as a subroutine of a complex optimization problem like ours.
Therefore, we construct a METRIC-like method by approx-
imating the distribution of Nj with a Poisson distribution
with mean given in (17). The METRIC-like approximation
makes the expected SC inventory levels a convex function of
assigned demand (Lemma 1). This property can be exploited
to design efficient solution algorithms. Although in principle
one can also use the negative binomial approximation sug-
gested by Graves [17], doing so requires rounding because the
parameter r has to be integer-valued. This makes the resulting
expected inventory and backorder level expressions nondif-
ferentiable with respect to assigned demand and increases
the difficulty of optimization. Therefore, we proceed with the
reasonably accurate and much more tractable METRIC-like
approximation.

Using the METRIC-like method, we approximate Nj in
(12) and (13) with a Poisson random variable. Therefore, we

replace Fj (s) by the Poisson CDF with mean λj L̄j , where
λj is the demand assigned to SC j (= ∑

i∈I λiYij ). L̄j is the
expected replenishment lead time which consists of expected
response time of the plant and the delivery lead time:

L̄j = W̄0 + αj = ρS0+1

λ(1 − ρ)
+ αj (18)

With the manipulations described earlier, it is possible to
reformulate the problem as follows:

min
∑
j∈J


fjXj − pSj + (hj + p)

Sj −1∑
s=0

Fj (s)

+
∑
i∈I

[
p

(
ρS0+1

λ(1 − ρ)
+ αj

)
+ dij

]
λiYij




+ h0

[
S0 − ρ

1 − ρ
(1 − ρS0)

]
(19)

Subject to:∑
j∈J

Yij = 1, for each i ∈ I (20)

Yij ≤ aijXj , for each i ∈ I , j ∈ J (21)

Sj ≤ CjXj , for each j ∈ {0} ∪ J (22)

[
ρS0+1

λ(1 − ρ)
+ αj − τ

] ∑
i∈I

λiYij

≤
Sj −1∑
s=0

[1 − Fj (s)], for each j ∈ J (23)

Xj ∈ {0, 1}, for each j ∈ J (24)

Yij ∈ {0, 1}, for each i ∈ I , j ∈ J (25)

Sj ≥ 0, integer, for each j ∈ {0} ∪ J (26)

In the next section, we present the solution approach based
on Lagrangian relaxation.

4. SOLUTION APPROACH

4.1. Obtaining a Lower Bound

We begin by proving the following model property that
provides an upper bound on the maximum plant base stock
level in many instances.

PROPERTY 1: If p = 0 and τ > αmax = maxj∈J {αj },
i.e., there is no backorder cost and the service time require-
ment is longer than the pure transportation lead time between
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the plant and any candidate SC site, then an upper bound to
the plant base stock level S0 exists. This is given by:

Smax
0 = min

{
S ≥ 0 :

ρS+1

λ(1 − ρ)
+ αmax ≤ τ

}
(27)

PROOF: The definition (27) and the condition τ > αmax

imply that for any values of Yij and Sj , the left hand side of
(23) will be nonpositive. As the right hand side is nonnegative,
this constraint always holds when S0 = Smax

0 . S0 is only con-
strained by the response time constraints and nonnegativity,
therefore Smax

0 is feasible for all values of the other decision
variables. As the objective function (19) is strictly increasing
in S0, any solution with S0 > Smax

0 will be suboptimal.

The above property states that if there is no backorder cost
and all the deterministic transportation lead times between
the SCs and the plant are less than the response time require-
ment, there is a plant base stock level that ensures all response
time constraints are satisfied with all SCs holding no inven-
tory. The optimal plant base-stock level will not exceed this
level.

The property, in addition to the existence of a capacity
constraint and the assumption that overall system demand
is low, implies that the range of stock levels that we need
to consider to satisfy the response time constraints is small
and is bounded above by the capacity. Similar properties
have likewise been exploited by Candas and Kutanoglu [7] in
developing solution algorithms. For our problem, it is possi-
ble to solve a small number of continuous problems by fixing
the plant base-stock level to each of the possible values. The
best (in terms of cost) of these continuous solutions will be
the optimal solution for the original problem.

When the plant base stock level is fixed, all terms that
depend only on S0 become constants. For instance, the plant
holding cost will be a constant and can be ignored when
solving the restricted problem for the current value of S0.
We choose to relax the assignment constraints (20) and the
service constraints (23) in the restricted problem. Given dual
multipliers πi and θj corresponding to constraints (20) and
(23), respectively, the Lagrangian problem decomposes by
candidate SC locations into subproblems of the following
form (for each j ∈ J ):

min
Yij ,Sj

(hj + p + θj )

Sj −1∑
s=0

Fj (s) − (p + θj )Sj

+
∑
i∈I

[(dij + pαj + θjαj − θτ)λi − πi]Yij

+ θjρ
S0+1

λ(1 − ρ)

∑
i∈I

λiYij

Subject to:

Sj ≤ Cj (28)

Yij ≤ aij , for each i ∈ I (29)

Yij ∈ {0, 1}, for each i ∈ I (30)

Sj ≥ 0, integer (31)

To solve the above subproblem, we use the fact that the
SCs have limited storage capacity. In practice, the possible
range of Sj is small even in the absence of a physical stor-
age limit because the management may want to limit the
amount of inventory held due to the high item cost. Therefore,
a promising approach is to solve the subproblem by fixing Sj

to each of the possible values. Moreover, we relax the inte-
grality of Yij , allowing them to take on any value between
0 and 1. The continuous relaxation provides a lower bound
for the Lagrangian relaxation approach. As shown in Section
6, the optimality gap of the Lagrangian algorithm is small
in general, suggesting that the continuous relaxation of the
subproblem is tight. We will now show that the continuous
relaxation of the subproblem can be solved efficiently.

With the value of Sj fixed, the continuous subproblem can
be expressed as:

min
0≤Yij ≤aij

∑
i∈I

AijYij + G

(∑
i∈I

λiYij

)
(32)

where G(x) = (hj + p + θj )

Sj −1∑
s=0

Fj (s, x) , Fj (s, x)

=
s∑

m=0

e−xL̄j (xL̄j )
m

m! (33)

and Aij = (dij + pαj + θjαj − θj τ )λi − πi

+ (θj + p)λiρ
S0+1

λ(1 − ρ)
(34)

The solvability of the subproblem depends on properties
of G(x) as discussed later.

LEMMA 1: The function G(x) is decreasing and convex
in x when x ≥ 0.

PROOF: Note thatG(x) represents the holding and penalty
costs on the steady state expected inventory level defined in
(15,16), with demand rate x assigned to the SC with base-
stock level Sj . Taking the partial derivative of Fj (s) with
respect to the assigned demand x (dropping subscript j for
simplicity):
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∂

∂x
F (s, x) = −Le−xL̄ +

s∑
m=1

L̄m

m!
[
mxm−1e−xL̄ − L̄xme−xL̄

]

= −Ls+1

s! xse−xL̄ ≤ 0

∂

∂x
G(x) = (h + p + θ)

S−1∑
s=0

∂

∂x
F (s, x) ≤ 0 (35)

Therefore, G(x) is decreasing in x. Taking second derivative
of F(s):

∂2

∂x2
F(s) =




L̄2e−xL̄ t = 0

− L̄s+1xs−1e−xL̄

(s − 1)! + L̄s+2xse−xL̄

s! otherwise

∂2

∂x2
G(x) = (h + p + θ)

S−1∑
s=0

∂2

∂x2
F(s)

= (h + p + θ)
L̄S+1xS−1e−xL̄

(S − 1)! ≥ 0 (36)

Therefore G(x) is convex.

COROLLARY 1: The continuous subproblem (32) is a
convex optimization problem.

Corollary (1) suggests that it is possible to solve the contin-
uous subproblem using standard convex optimization solvers.
Alternatively, we propose an efficient procedure that exploits
the problem properties. The algorithm is based on the fol-
lowing theorems, similar to the results of Ozsen et al. [25].
To begin, we divide customers within the coverage distance
(i.e., aij = 1) into two subsets I+

j and I−
j , with Aij > 0 and

Aij ≤ 0, respectively. Suppose there are m customers in the
subset I+

j which are sorted in the following order:

0 ≤ A1j

λ1
≤ A2j

λ2
≤ · · · Amj

λm

(37)

THEOREM 1: There exists an optimal solution Y ∗
j to the

continuous subproblem (32) where:

1. Yij = 1 for all i ∈ I−
j .

2. At most one of the assignment variables Y ∗
ij takes on

a (strictly) fractional value.
3. If Y ∗

kj > 0 for some 1 ≤ k ≤ m, then Y ∗
ij = 1 for all

1 ≤ i ≤ k − 1.
4. Yij = 0 for all i where aij = 0.

PROOF: The first property follows from Lemma 1 which
states that G(x) is decreasing. Suppose that in an optimal
solution, Yij < 1 for some i ∈ I−

j . Then by adding a positive

quantity ε ≤ 1 − Yij , the objective function value decreases,
as the linear term does not increase (Aij ≤ 0) and the non-
linear term decreases with the argument of G(.) increasing.
Therefore there is a contradiction.

To prove the second property, let Y ′
j be an optimal solu-

tion vector to the continuous subproblem with Y ′
kj and Y ′

lj

taking on strictly fractional values, k, l ∈ I+
j and k < l. Let

the objective value of this solution be Z′. Then define a new
solution Y ′′

j as follows:

Y ′′
ij =




Y ′
ij if i �= l, k

Y ′
kj + ε if i = l

Y ′
lj − λk

λl
ε if i = l

(38)

Let ε = min{1−Y ′
kj , λl

λk
Y ′

lj } which implies that Y ′′
j is feasi-

ble. Denote the objective value of the solution with Y ′′
j by Z′′.

Then the difference between the two solutions is given by:

Z′′−Z′ = ε

(
Akj − Alj

λk

λl

)

+ G

(∑
i∈I

λiY
′
ij + λkε− ελl

λk

λl

)
−G

(∑
i∈I

λiY
′
ij

)

= ε

(
Akj − Alj

λl

λk

)

≤ ε

(
Akj − Akj

λk

λk

)
= 0 (39)

The inequality (39) holds because k is ranked before l

in I+
j . The above implies that Y ′′

j is optimal. Recall that

ε ≤ min{1 − Y ′
kj , λl

λk
Y ′

lj }. For each of the possible values:

1. If ε = 1 − Y ′
kj , Y ′′

kj = 1, 0 < Y ′′
lj < 1

2. If ε = λl

λk
Y ′

lj , Y ′′
lj = 0, 0 < Y ′′

kj < 1

In both cases, the number of variables with strictly frac-
tional values is reduced by one without increasing the objec-
tive value. We may repeat this process until there is only
one fractional value in the solution, which proves the second
property.

The third property can be proven using a similar inter-
change argument.

The above theorem suggests that there is at most one
assignment variable with a fractional value at optimality. The
next theorem allows us to find such a value.

THEOREM 2: Consider a solution satisfying the proper-
ties described in Theorem 1 in which there is exactly one i∗
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where 1 ≤ i∗ ≤ m where 0 < Yi∗j < 1. Then the solution is
optimal if:

Ai∗j

λi∗
= (hj + p + θj )

Sj −1∑
s=0

L̄s+1

s! xse−xL̄ (40)

where x = ∑
i∈I λiYij

PROOF: The Karush-Kuhn-Tucker (KKT) optimality con-
ditions for the continuous subproblem are given by:

Feasibility Conditions

0 ≤ Yij ≤ 1, for each i ∈ I (41)

ui , vi ≥ 0, for each i ∈ I (42)

Gradient Conditions:

Aij + (hj + p + θj )

Sj −1∑
s=0

∂

∂Yij

Fj (s) − ui + vi = 0,

for each i ∈ I (43)

Complementary Slackness Conditions

uiYij = 0, for each i ∈ I (44)

vi(Yij − 1) = 0, for each i ∈ I (45)

If Yij takes on a fractional value, then ui = vi = 0 by
(44,45). Then (43) becomes (40). The continuous subprob-
lem is convex by Corollary 1, therefore the KKT solution as
described earlier is a global minimum.

Based on the above results, we propose the following
algorithm to solve subproblem (32) for a given j with Sj

fixed:

ALGORITHM 1:

Step 1: Partition the set of customers I into:

I+
j = i ∈ I : Aij > 0

I−
j = i ∈ I : Aij ≤ 0

Step 2: Sort customers in the subset I+
j such that:

A1j

λ1
≤ A2j

λ2
≤ · · · Amj

λm

where m = |I+
j |

Step 3: Fix Yij = 1 for all i ∈ I−
j .

Step 4: Compute the following:

Â0j :=
∑
i∈I−

j

Aij

D̂0j :=
∑
i∈I−

j

λi

Define:

Rj(i, x) := Aij

λi

− (hj + p + θj )

Sj −1∑
s=0

L̄s+1

s! xse−xL̄ (46)

Let k = 1 and go to Step 5.

Step 5: Compute the following:

Âkj := Âk−1,j + Akj

D̂kj := D̂k−1,j + λk

Step 5a: If Rj(k, Dk−1) < 0 and Rj(k, Dk) > 0, a root to
equation (40) exists in the interval Dk−1,j < x < Dkj . This
root corresponds to an optimal solution with 0 < Ykj < 1,
Yij = 1 for i = 1 . . . k −1 and

∑
i λiYij = x. Apply a brack-

eted root-finding algorithm such as Brent’s method (see, for
example, Chapter 4 of ref. [3]) to find the root to the equation
Rj(k, x) = 0, given by x∗. Then the algorithm terminates
and the optimal solution is given by:

Y ∗
ij =




1 if i ∈ I−
j ∪ {1 . . . k − 1}

x∗ − Di−1,j

λi

i = k

0 otherwise

(47)

Step 5b: If Rj(k, Dk−1) and Rj(k, Dk) have the same sign,
compute:

P̂kj := Âkj + G(D̂kj )

Increment k by 1. If k ≤ m, go to the beginning of Step 5.
If k > m, go to Step 6.

Step 6: If we loop through the set I+
j once without find-

ing a fractional solution, the optimal cost is given by P̂k∗j =
mink=1...m P̂kj . The optimal solution is given by:

Y ∗
ij =

{
1 if i ∈ I−

j ∪ {1 . . . k∗}
0 otherwise

(48)

COROLLARY 2: As the algorithm proceeds, if for any
given i∗ ∈ I+

j and Sj we find that the LHS of (40) is greater
than the RHS, there will be no solution to (40) for any i ≥ i∗.

PROOF: The LHS of (40) is increasing in i. The RHS
is decreases with added demand. Therefore, if the LHS
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is greater than the RHS, there cannot be a solution for
i ≥ i∗.

The above corollary allows us to save computation time as
it specifies conditions under which the existence of a root to
(40) does not need be checked.

The most costly step computationally in the algorithm is
solving for the root of equation (40). The algorithm checks
the necessary condition for a root to exist within the interval
in question. In our computational tests, we observe that a root
seldom exists. This suggests that there often exists an integral
optimal solution to the subproblem (32). In the vast majority
of iterations, the root-finding procedure is not called.

The next most costly step in the algorithm is sorting the
set I+

j , which has complexity |I+
j | log |I+

j |. However, the set
needs to be sorted only once to solve the subproblems for all
possible values of Sj .

4.2. Obtaining an Upper Bound

Section 4.1 outlines a method to find a lower bound for
the problem given a set of Lagrangian multipliers. In each
iteration of the Lagrangian procedure, we make use of the
lower bound solution to find a upper bound (feasible) solution
to the problem. Recall that the service constraints (23) and
customer assignment constraints (20) are relaxed. Therefore,
a lower bound solution represents a system in which these
constraints may be violated. We now outline a heuristic pro-
cedure to construct a feasible solution using the lower bound
solution.

We begin by opening the SCs that are opened in the lower
bound solution and setting the plant base stock level equal
to the value obtained in the lower bound solution. Then, we
partition the set of customers into three groups and determine
their assignments in order as follows:

1. The ones that are assigned to exactly one SC in the
lower bound solution;

2. The ones that are assigned to more than one SC in
the lower bound solution; and

3. The ones that are unassigned in the lower bound
solution.

We first try to assign each customer to the nearest SC that
it is assigned to in the lower bound solution. If doing so is
infeasible (i.e., increases base stock level above capacity), we
assign the customer to the open SC that results in the small-
est cost increase. For each feasible assignment, the optimal
base stock levels at SCs and thus inventory-related costs can
be computed easily by the observation that the optimal base-
stock level at a SC is the minimum of the newsvendor solution
and the upper bound allowed by storage capacity.

4.3. Summary of Lagrangian Relaxation Algorithm

We summarize the algorithm discussed later:

ALGORITHM 2:

Step 0: Iteration count n = 1. Initialize dual multipliers
(θ1, π1). They can be set at any feasible value (e.g., all equal
to 0).

Step 1: Find lower bound using the procedure described in
Section 4.1 by solving subproblem (32) for each j and Sj =
0 . . . Cj using Algorithm 1. Let the resulting lower bound
value be LBn and the lower bound solution be (Xn, Yn, Sn).

Step 2: Find an upper bound with the procedure described
in Section 4.2, using lower bound solution (Xn, Yn, Sn) as
input. If this upper bound is smaller than the current best
upper bound, let its cost be UB and the corresponding (fea-
sible) solution be (X̄, Ȳ , S̄). If UB−LBn

UB
< ε where ε > 0

is a pre-defined tolerance level, terminate the algorithm and
the best solution found is (X̄, Ȳ , S̄). Otherwise, continue to
Step 3.

Step 3: Update the dual multipliers using the subgradient
procedure using information from the lower bound solution
(Xn, Yn, Sn). Let the new multipliers be (θn+1, πn+1) and
increment n by 1. If n is larger than a predefined iteration
limit, terminate. Otherwise go to Step 1.

5. COMPUTATIONAL RESULTS

5.1. Experimental Setup

In this section, we describe the computational experiments
conducted to test the performance of our solution procedure.
Three data sets from Daskin [10] with 49, 88 and 150 US
cities (with 1990 Census data) respectively are used. The
cost coefficients are adjusted in the following manner: The
fixed costs fj are unchanged from the Daskin [10] dataset.
The transportation costs (dij ) are obtained by dividing the dis-
tance between two nodes from Daskin [10] by 10. Demand
rates (λi) are set to 10−6 times the population figure given
in Daskin [10]. The transportation lead time (αj ) is set to
be equal to 1/10 of the distance between the corresponding
demand node and Springfield, IL, in the 49-node dataset and
Chicago in the 88-node and 150-node datasets. Finally, the
per-unit holding and penalty costs (h0, hj , p) are set to 50
and 150, respectively. The algorithm is coded in C++ and
run on a PC with Intel Core 2 Duo CPU (2.13 GHz), 2 GB
of RAM, and Windows Vista.

5.2. Algorithmic Performance

In the first experiment, we are concerned with the perfor-
mance of the algorithm, i.e., speed and optimality gap. We
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Figure 1. Optimal costs of using penalty cost and service con-
straint to achieve a certain average response time.

run the algorithm with the three data sets for different values
of plant and SC capacities (C0, Cj = 10 or 5), utilization rate
(ρ = 0.9 or 0.5), response time requirement (τ = 5.5 or 1.5),
and distance requirement (dmax = 2000 or 500 miles).

For all instances tested, the algorithm converges to a fea-
sible solution within approximately 1 to 2% of optimality in
reasonable amount of time. In the majority of the instances,
the optimality gap is less than 1%. For the 49-node data set,
the solution time range from a few seconds up to approx-
imately 3 min. All 88-node instances are solved within 2
min. The solution times for the 150-node instances range
from a minute up to 35 min. The solution times recorded are
reasonable for the respective problem sizes.

5.3. Effects of Response Time Requirement and
Penalty Cost

In the second experiment, we wish to test the impact of the
response time requirement and the backorder penalty cost
and their relationship. In traditional inventory problems with
service considerations, it can be shown that there is a one-to-
one correspondence between the service level and the penalty
cost. In reality, it is often difficult to quantify “penalty costs”
of having a stock-out or not fulfilling an order within a spec-
ified time. We would like to see whether a response time
constraint can act as a perfect substitute for a penalty cost in
our problem.

Figure 1 shows how high the total cost of location, trans-
portation, and inventory holding needs to be (vertical axis)
to maintain a expected response time at a certain level (hori-
zontal axis), by using a penalty cost or a tight response time
requirement. The figure shows that the curve obtained by
using penalty costs lies above the one obtained by using the
response time requirement. This means that setting a tight

response time requirement can ensure a certain response time
in a more cost-effective manner than by using penalty costs.

In our solution algorithm, the response time constraints (5)
are relaxed by adding penalty terms to the objective function.
We notice that this is structurally equivalent to increasing the
penalty cost p by the dual multiplier θj . As the Lagrangian
relaxation algorithm converges, the optimal dual multiplier
values would almost ensure that the constraints are satisfied.
Therefore, we would expect the following two instances: the
first one with 0 penalty cost and a tight response time con-
straint, and the second one with very loose response time
constraint and unit penalty cost equal to the optimal θj values
found in solving the first one, to give optimal solutions that are
almost the same. This means that penalty costs and response
time requirement are to some degree, equivalent in our model.
However, this is not true in the practical sense. We do not
know the optimal dual multipliers for the instance with tight
response time constraints before solving it. Even if the values
are known, they are generally not equal across candidate SC
locations. However, there is no reason to define different unit
penalty costs for different candidate SC locations, before even
deciding which SCs will be opened and which customers they
will serve. Our computational experiment shows that using
a uniform (across candidate SC locations) penalty cost para-
meter will require higher costs to achieve a certain response
time level than using a tight response time requirement.

5.4. Benefits of Using Integrated Model

Following the traditional approach adopted by logistics
planners, it is natural to solve the location and inventory prob-
lems sequentially. In this section, we compare the solutions
generated by our integrated approach with those obtained
from the traditional sequential approach. To do so, we gen-
erate a number of instances by varying the unit holding and
backorder costs and generate two solutions. The integrated
solution is obtained from solving our model, and the sequen-
tial solution can be obtained by first solving an uncapacitated
facility location (UFL) problem (ignoring inventory effects)
and then optimizing the inventory levels given the facility
locations.

Figure 2 shows comparisons of the two solutions. We first
observe that as expected, the integrated approach gives a
lower total cost. Similar results are reported by Shen and
Qi [31] and Candas and Kutanoglu [7]. For a closer look
at the differences, we plot the base stock levels of the two
solutions at both echelons. It can be seen that the sequential
approach always places more inventory at the plant but less
at the SCs compared to the sequential solution. One possible
explanation is that because the uncapacitated facility location
problem only considers the transportation cost, the sequen-
tial solution tends to locate more SCs relatively closer to
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Figure 2. Optimal costs and base stock levels of using integrated and sequential approaches.

customers, each of which handling a smaller demand. There-
fore, the degree of inventory risk-pooling at the SCs is small.
The result is that a larger proportion of inventory is transferred
to the plant (which serves all demand) such that risk-pooling
is achieved. This is less responsive to customer demand than
the integrated solution because less inventory is stored at SCs
that serve customers directly.

5.5. Comparisons with One-Echelon Systems

It is often convenient to manage inventory at a single
level. Benjaafar et al. [2] consider the service parts inventory-
location problem where inventory can only be held at the
lower echelon (the SCs). In this experiment, we would like to
study the benefits from the possibility of holding inventory
at the plant, also. Note that our formulation models a single-
echelon system when the plant storage capacity C0 is set to 0.

In the experiment, we allow the response time requirement
τ to vary between 0.3 and 1.3. For each level of τ , we solve the
problem with plant storage capacity C0 equal 0 (one-echelon)
and 10 (two-echelon). The storage capacity at the SCs, Cj ,
is set to 10. We plot the expected cost against the response
time requirement in Figure 3.

From Figure 3, we observe that when the response time
requirement is loose (high value of τ ), it is optimal to operate
a single-echelon system and not to stock at the plant. The
two-echelon solutions have plant base stock levels equal to
0. However, when the response time requirement becomes
tight, it is beneficial to keep inventory at the plant and man-
age a two-echelon system. Keeping inventory at the plant
allows fewer units to be kept at the SCs. Although the
total inventory in the system may increase, the increased
inventory at the plant is shared among all SCs. This shar-
ing enhances availability and therefore the same response

Figure 3. Costs of one-echelon and two-echelon systems.
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time requirements can be met with lower costs. For some
instances (e.g., when τ = 0.4), the expected cost can
increase by 7% if keeping stock at the upper echelon is not
allowed.

5.6. Scenario-Based Model

Facility location involves long-term decisions. One chal-
lenge that often arises in strategic supply chain design is the
unavailability of accurate demand and cost forecasts at the
time of making design decisions such as facility location.
As such decisions are difficult and very costly to reverse,
it is important that they are robust against the uncertain
environment. Snyder [37] surveys various location models
that aim at producing robust or reliable solutions. Scenario-
based modeling is a very popular technique for this class
of problems. Under this approach, uncertainty is character-
ized by a finite set of discrete scenarios. One example is
the article by Snyder et al. [38], who extend the inventory-
location model of Shen et al. [29] to incorporate uncer-
tainty in the business environment (i.e., demand and shipping
costs).

In this section, we assume that the demand rates (λi) are
uncertain and formulate a two-stage stochastic programming
model to generate robust solutions. It is straightforward to
extend the model and allow other parameters such as ship-
ping, holding and penalty costs to be uncertain as well. The
first-stage decision is to determine the subset of candidate
sites at which to locate SCs (i.e., the Xj variables) given a
finite set of possible scenarios of demand rates. Then in the
second stage, the company decides the customer-SC alloca-
tions and base stock levels after observing which one of the
scenarios is realized.

Define K as the set of scenarios and qk as the probability
that scenario k ∈ K is realized. Moreover, we add a sub-
script k to any parameter (e.g., λik) and decision variable (e.g.,
Sjk that may take on different values under different scenar-
ios. Then we may formulate the scenario-based problem as
follows:

min
∑
j∈J

fjXj

+
∑
k∈K

qk




∑
j∈J


+

∑
i∈I

[
p

(
ρS0k+1

λk(1 − ρk)
+ αj

)
+ dij

]
λikYijk

+ (hj + p)

Sjk−1∑
s=0

Fjk(s) − pSjk




+ h0

[
S0k − ρk

1 − ρk

(
1 − ρ

S0k

k

)]


Subject to:∑
j∈J

Yijk = 1, for each i ∈ I , k ∈ K

Yijk ≤ Xj , for each i ∈ I , j ∈ J , k ∈ K

Sjk ≤ CjXj , for each j ∈ {0} ∪ J , k ∈ K

Xj ∈ {0, 1}, for each j ∈ J

Yijk ∈ {0, 1}, for each i ∈ I , j ∈ J , k ∈ K

Sjk ≥ 0, integer, for each j ∈ {0} ∪ J , k ∈ K

We apply a multiobjective technique and consider two
objectives: the expected cost and the worst-case “service
time” across all scenarios. The “service time” for a customer
under a scenario considered in this section is the sum of the
expected response time at the assigned SC plus the determin-
istic transportation lead time from the SC to the customer.
We attempt to minimize the longest service time among all
customers across all scenarios. By considering the worst-case
service time over all possible scenarios, this objective reflects
the desire for the supply chain to be robust. Note that the
service time objective replaces the service time and distance
constraints (21 and 23) that are included in the single-scenario
model.

We apply a genetic algorithm similar to the one described in
Shen and Daskin [30]. For the 49-node data set, 30 scenarios
are generated by perturbing the demand rates. Specifically,
the demand rate for customer i under scenario k is given by
λik = λi(0.5 + εik), where λi is the demand rate for cus-
tomer i used in the previous tests and εik is a [0, 1] random
variable drawn independently for each (i, k) pair. We assign
equal probability to all scenarios.

Figure 4 shows the efficient frontier (i.e., those that are not
worse than any other solution in both objectives) after 25, 50,
100, and 500 solutions. It can be observed that the efficient
frontier moves toward the bottom-left corner (i.e., improves)
as the number of generations increases. Similar to the results
in Section 6.4, we observe that the slope of the efficient fron-
tier is steeper when the expected cost is low. This suggests
that starting from a solution with low average-case cost, the
marginal cost of improving the worst-case service time is
small. For instance, improving the worst-case service time
by a factor of 3 (1.8 to 0.6) only increases the average-case
cost by about 20% (8000 to 10,000).

Furthermore, we observe that the improvement of the effi-
cient frontier appears to diminish with the number of genera-
tions. The relevant region (the bottom-left region) of the 100-
generation frontier approximates the 500-generation frontier
closely. Therefore, it may be sufficient to run a small number
of generations to obtain fairly good results. The running time
for 100 generations is less than 10 min.

Before ending this section, we note that the model dis-
cussed in this section can be applied to multi-commodity
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Figure 4. Trade-off curve of expected cost vs. service time for scenario-based problem.

problems. Service parts systems often handle multiple non-
substitutable parts. By interpreting K as the set of commodi-
ties, the demand rates (λik) as well as the assignment and
inventory variables (Yijk , Sjk) become commodity-specific.
Then the same formulation is equivalent to locating common
SCs to store and distribute multiple commodities. For each
commodity, the customer-SC assignment and the base stock
levels at the plant and SCs are optimized. The same GA can
be applied to produce high-quality solutions.

6. CONCLUSIONS AND FUTURE RESEARCH

In this article, we formulate a model for designing of a
service parts network to ensure short response times. Fixed
costs of locating service centers, shipping costs, and inven-
tory holding costs at both the plant and the service centers
are considered. The model is formulated as a nonlinear inte-
ger programming problem. The formulation can be viewed

as an extension of the uncapacitated fixed-charge location
problem.

The inventory-related costs and service performance met-
rics are approximated using ideas similar to those in Sher-
brooke [32]. As a result, we are able to decompose the
problem into a series of convex optimization problems using
Lagrangian relaxation. Then the algorithm is tested using
datasets with 49, 88, and 150 nodes. Computation times are
relatively short for such a complex integer nonlinear pro-
gramming problem, reflecting the efficiency of the proposed
solution approach. In addition, we compare the difference
between using a response time requirement and penalty costs
in our model. We demonstrate that by using a response time
requirement, it is less costly to achieve a target response time
than by using penalty costs as a surrogate. Finally, we high-
light the importance of selecting the right trade-off between
service and cost. The marginal cost for improving response
time is typically higher when the response time requirement is
tight than when it is loose. Therefore, care should be taken in
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specifying response time requirements to avoid unnecessary
costs. Our computational results also demonstrate the cost
savings from implementing a two-echelon system as opposed
to a single-echelon one when response time requirements are
tight. By storing some inventory at the plant that is shared
by all SCs, it is possible to achieve the same response time
requirement at a lower cost.

Finally, we formulate a scenario-based model and propose
a genetic algorithm to solve it. Using two contrasting objec-
tives of expected cost and worst-case expected response time
among the SCs, our model captures the trade-off between
average-case performance and robustness in view of future
uncertainty. The same model and solution approach can also
be applied to solving multiple-commodity problems which
are common in service parts systems.

We plan this work in several directions. First, we would
like to relax the assumption of the (S −1, S) inventory policy
to allow batch ordering by SCs. This extension will make the
model applicable to a larger variety of supply chain design
environments. Second, we would like to consider the case
where parts of the network may be disrupted. In many sup-
ply chain and military settings, disruptions may occur and
certain facilities (the plant or service centers) or arcs may
break down. We would like to address important questions
such as how to design robust systems that are able to oper-
ate under unanticipated breakdowns of nodes or arcs on the
network.

Another important issue is the nature of the response time
requirement. The model we present in this article consid-
ers only the mean response time. However, it is desired that
service be not just quick on average but also reliable. In classi-
cal inventory models, service levels are usually defined using
probabilistic constraints (e.g., type I service levels in contin-
uous review problems). As an extension, we would like to
redefine the service requirements using either chance con-
straints on the response time distribution or constraints on
the service time variance.
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